试题
题目:
(2006·哈尔滨)已知:如图,点E为正方形ABCD的边AD上一点,连接BE,过点A作AH⊥BE,垂足为H,延长AH交CD于点F.
求证:DE=CF.
答案
证明:∵四边形ABCD为正方形,
∴AB=AD=CD,∠D=∠BAE=90°,
∴∠EAH+∠BAH=90°
∵AH⊥BE,
∴∠AHB=90°,
∴∠ABH+∠BAH=90°,
∴∠DAF=∠ABE.(1分)
在△ADF与△BAE中,有
∠DAF=∠ABE
AD=BA
∠D=∠BAE
,
∴△ADF≌△BAE.(1分)
∴AE=DF.(1分)
∴AD-AE=CD-DF,
即DE=CF.(1分)
证明:∵四边形ABCD为正方形,
∴AB=AD=CD,∠D=∠BAE=90°,
∴∠EAH+∠BAH=90°
∵AH⊥BE,
∴∠AHB=90°,
∴∠ABH+∠BAH=90°,
∴∠DAF=∠ABE.(1分)
在△ADF与△BAE中,有
∠DAF=∠ABE
AD=BA
∠D=∠BAE
,
∴△ADF≌△BAE.(1分)
∴AE=DF.(1分)
∴AD-AE=CD-DF,
即DE=CF.(1分)
考点梳理
考点
分析
点评
专题
正方形的性质;全等三角形的判定与性质.
要证DE=CF,可先证AE=DF,根据题意易得Rt△ADF≌Rt△BAE,由全等三角形的性质可得到证明.
此题主要考查正方形的性质及由三角形全等证线段相等,培养同学们综合运用知识的能力.
证明题.
找相似题
(2013·资阳)如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )
(2013·台湾)附图为正三角形ABC与正方形DEFG的重叠情形,其中D、E两点分别在AB、BC上,且BD=BE.若AC=18,GF=6,则F点到AC的距离为何?( )
(2013·齐齐哈尔)在锐角三角形ABC中,AH是BC边上的高,分别以AB、AC为一边,向外作正方形ABDE和ACFG,连接CE、BG和EG,EG与HA的延长线交于点M,下列结论:①BG=CE ②BG⊥CE ③AM是△AEG的中线 ④∠EAM=∠ABC,其中正确结论的个数是( )
(2013·连云港)如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为( )
(2013·东营)如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下列结论:
(1)AE=BF;(2)AE⊥BF;(3)AO=OE;(4)S
△AOB
=S
四边形DEOF
中正确的有( )