试题
题目:
(2007·台州)把正方形ABCD绕着点A,按顺时针方向旋转得到正方形AEFG,边FG与BC交于点H(如图).试问线段HG与线段HB相等吗?请先观察猜想,然后再证明你的猜想.
答案
证明:HG=HB,
证法1:连接AH,
∵四边形ABCD,AEFG都是正方形,
∴∠B=∠G=90°,
由题意知AG=AB,又AH=AH,
∴Rt△AGH≌Rt△ABH(HL),
∴HG=HB.
证法2:连接GB,
∵四边形ABCD,AEFG都是正方形,
∴∠ABC=∠AGF=90°,
由题意知AB=AG,
∴∠AGB=∠ABG,
∴∠HGB=∠HBG,
∴HG=HB.
证明:HG=HB,
证法1:连接AH,
∵四边形ABCD,AEFG都是正方形,
∴∠B=∠G=90°,
由题意知AG=AB,又AH=AH,
∴Rt△AGH≌Rt△ABH(HL),
∴HG=HB.
证法2:连接GB,
∵四边形ABCD,AEFG都是正方形,
∴∠ABC=∠AGF=90°,
由题意知AB=AG,
∴∠AGB=∠ABG,
∴∠HGB=∠HBG,
∴HG=HB.
考点梳理
考点
分析
点评
专题
正方形的性质;全等三角形的判定与性质.
要证明HG与HB是否相等,可以把线段放在两个三角形中证明这两个三角形全等,或放在一个三角形中证明这个三角形是等腰三角形,而图中没有这样的三角形,因此需要作辅助线,构造三角形.
解答本题要充分利用正方形的特殊性质.注意在正方形中的特殊三角形的应用,搞清楚矩形、菱形、正方形中的三角形的三边关系,可有助于提高解题速度和准确率.
探究型.
找相似题
(2013·资阳)如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )
(2013·台湾)附图为正三角形ABC与正方形DEFG的重叠情形,其中D、E两点分别在AB、BC上,且BD=BE.若AC=18,GF=6,则F点到AC的距离为何?( )
(2013·齐齐哈尔)在锐角三角形ABC中,AH是BC边上的高,分别以AB、AC为一边,向外作正方形ABDE和ACFG,连接CE、BG和EG,EG与HA的延长线交于点M,下列结论:①BG=CE ②BG⊥CE ③AM是△AEG的中线 ④∠EAM=∠ABC,其中正确结论的个数是( )
(2013·连云港)如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为( )
(2013·东营)如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下列结论:
(1)AE=BF;(2)AE⊥BF;(3)AO=OE;(4)S
△AOB
=S
四边形DEOF
中正确的有( )