试题
题目:
(2013·北碚区模拟)如图,已知正方形ABCD,点E是BC上一点,点F是CD延长线上一点,连接EF,若BE=DF,点P是EF的中点.
(1)求证:DP平分∠ADC;
(2)若∠AEB=75°,AB=2,求△DFP的面积.
答案
(1)证明:连接PC.
∵ABCD是正方形,
∴∠ABE=∠ADF=90°,AB=AD.
∵BE=DF,
∴△ABE≌△ADF(SAS),
∴∠BAE=∠DAF,AE=AF.
∴∠EAF=∠BAD=90°.
∵P是EF的中点,
∴PA=
1
2
EF,PC=
1
2
EF,
∴PA=PC.
又∵AD=CD,PD=PD(公共边),
∴△PAD≌△PCD,(SSS)
∴∠ADP=∠CDP,即DP平分∠ADC;
(2)作PH⊥CF于H点.
∵P是EF的中点,
∴PH=
1
2
EC.
设EC=x.
由(1)知△EAF是等腰直角三角形,
∴∠AEF=45°,
∴∠FEC=180°-45°-75°=60°,
∴EF=2x,FC=
3
x,BE=2-x.
在Rt△ABE中,2
2
+(2-x)
2
=(
2
x)
2
,即x
2
+4x-8=0,
解得 x
1
=-2-2
3
(舍去),x
2
=-2+2
3
.
∴PH=-1+
3
,FD=
3
(-2+2
3
)-2=-2
3
+4.
∴S
△DPF
=
1
2
(-2
3
+4)×
(-1+
3
)
=3
3
-5.
(1)证明:连接PC.
∵ABCD是正方形,
∴∠ABE=∠ADF=90°,AB=AD.
∵BE=DF,
∴△ABE≌△ADF(SAS),
∴∠BAE=∠DAF,AE=AF.
∴∠EAF=∠BAD=90°.
∵P是EF的中点,
∴PA=
1
2
EF,PC=
1
2
EF,
∴PA=PC.
又∵AD=CD,PD=PD(公共边),
∴△PAD≌△PCD,(SSS)
∴∠ADP=∠CDP,即DP平分∠ADC;
(2)作PH⊥CF于H点.
∵P是EF的中点,
∴PH=
1
2
EC.
设EC=x.
由(1)知△EAF是等腰直角三角形,
∴∠AEF=45°,
∴∠FEC=180°-45°-75°=60°,
∴EF=2x,FC=
3
x,BE=2-x.
在Rt△ABE中,2
2
+(2-x)
2
=(
2
x)
2
,即x
2
+4x-8=0,
解得 x
1
=-2-2
3
(舍去),x
2
=-2+2
3
.
∴PH=-1+
3
,FD=
3
(-2+2
3
)-2=-2
3
+4.
∴S
△DPF
=
1
2
(-2
3
+4)×
(-1+
3
)
=3
3
-5.
考点梳理
考点
分析
点评
专题
正方形的性质;三角形的面积;全等三角形的判定与性质;勾股定理.
(1)连接PC.根据直角三角形的性质可得PC=
1
2
EF=PA.运用“SSS”证明△APD≌△CPD,得∠ADP=∠CDP;
(2)作PH⊥CF于H点.分别求DF和PH的长,再计算面积.设DF=x,在Rt△EFC中,∠CEF=60°,运用勾股定理可求DF;根据三角形中位线定理求PH.
此题考查正方形、特殊直角三角形的性质及全等三角形的判定与性质等知识点,综合性强,难度较大.
压轴题.
找相似题
(2013·资阳)如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )
(2013·台湾)附图为正三角形ABC与正方形DEFG的重叠情形,其中D、E两点分别在AB、BC上,且BD=BE.若AC=18,GF=6,则F点到AC的距离为何?( )
(2013·齐齐哈尔)在锐角三角形ABC中,AH是BC边上的高,分别以AB、AC为一边,向外作正方形ABDE和ACFG,连接CE、BG和EG,EG与HA的延长线交于点M,下列结论:①BG=CE ②BG⊥CE ③AM是△AEG的中线 ④∠EAM=∠ABC,其中正确结论的个数是( )
(2013·连云港)如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为( )
(2013·东营)如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下列结论:
(1)AE=BF;(2)AE⊥BF;(3)AO=OE;(4)S
△AOB
=S
四边形DEOF
中正确的有( )