试题

题目:
青果学院如图,已知ABCD为正方形,△AEP为等腰直角三角形,∠EAP=90°,且D、P、E三点共线,若EA=AP=1,PB=
5
,则DP=
3
3

答案
3

解:连结BE,
∵∠EAP=∠BAD=90°,
∴∠EAP-∠BAP=∠BAD-∠BAP,
∴∠EAB=∠PAD,
∵AE=AP,AB=AD,
在△AEB和△APD中,青果学院
AE=AP
∠EAB=∠PAD
AB=AD

∴△AEB≌△APD,
∴BE=DP,∠AEB=∠APD,
∵∠APE=45°,D,P,E三点共线,
∴∠PAD+∠PDA=45°,
∴∠AEB=∠APD=180°-45°=135°,
∵∠AEP=45°,
∴∠PEB=∠AEB-∠AEP=90°,
∴△PEB为直角三角形,
∵EA=PA=1,
∴EP=
2

∵PB=
5

∴BE=DP=
3

故答案为:
3
考点梳理
正方形的性质;全等三角形的判定与性质;勾股定理.
连结BE,利用已知条件首先证明△AEB≌△APD,在证明△PEB为直角三角形,利用勾股定理计算即可.
本题考查了正方形的性质、等腰直角三角形的性质、全等三角形的判定和性质、勾股定理的运用以及直角三角形的判定,题目的综合性较强,难度不小.
找相似题