试题
题目:
如图,正方形ABCD的边长为4,E为BC上任意一点,EF⊥AC于F,EG⊥BD于G,则EF+EG的值为
2
2
2
2
.
答案
2
2
解:∵四边形ABCD是正方形,边长为4,
∴AD=CD=4 AC⊥BD∠DAO=45°;
∴AC
2
=AD
2
+CD
2
=4
2
+4
2
=32,则AC=4
2
,
∵EF⊥AC,GE⊥BD,
∴∠OGE=∠OFE=90°;
又∵AC⊥BD,
∴四边形OGEF是矩形;
∴EG=OF,
又∵∠DAO=∠FCE=45°,
∴EF=CF;
∵OF+CF=OC=
1
2
AC×4
2
=2
2
,
∴GE+EF=2
2
.
故答案为2
2
考点梳理
考点
分析
点评
专题
正方形的性质.
根据条件可以得到四边形GEOF是矩形,因而EG=OF,同时易证△FCE是等腰直角三角形,因而FE=FC,则FE+OF=OA.根据勾股定理即可求解.
本题主要利用三角形相似将所求的线段表示出来.
几何图形问题.
找相似题
(2013·资阳)如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )
(2013·台湾)附图为正三角形ABC与正方形DEFG的重叠情形,其中D、E两点分别在AB、BC上,且BD=BE.若AC=18,GF=6,则F点到AC的距离为何?( )
(2013·齐齐哈尔)在锐角三角形ABC中,AH是BC边上的高,分别以AB、AC为一边,向外作正方形ABDE和ACFG,连接CE、BG和EG,EG与HA的延长线交于点M,下列结论:①BG=CE ②BG⊥CE ③AM是△AEG的中线 ④∠EAM=∠ABC,其中正确结论的个数是( )
(2013·连云港)如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为( )
(2013·东营)如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下列结论:
(1)AE=BF;(2)AE⊥BF;(3)AO=OE;(4)S
△AOB
=S
四边形DEOF
中正确的有( )