试题
题目:
(2009·保定二模)正方形ABCD中,点P是CD所在直线上一点,连接PA,分别过B、D作BE⊥PA、DF⊥PA,垂足分别为E、F.
(1)如图1,当点P在DC边上时,通过观察或测量,猜想线段BE、DF、EF应满足怎样的数量关系,并证明你的猜想;
(2)如图2,当点P在DC的延长线上时,通过观察或测量,猜想线段BE、DF、EF应满足怎样的数量关系,并证明你的猜想;
(3)如图3,当点P在CD的延长线上时,线段BE、DF、EF又具有怎样的数量关系,请直接写出结论(不必进行证明).
答案
解:(1)BE-DF=EF,
对图1中结论证明如下:
∵BE⊥PA,DF⊥PA,
∴∠BEA=∠AFD=90°,
∵四边形ABCD是正方形,
∴AB=AD,∠BAD=90°,
∴∠BAE+∠DAF=∠ADF+∠DAF=90°,
∴∠BAE=∠ADF,
在△BAE和△ADF中
∠BEA=∠AFD
∠BAE=∠ADF
AB=AD
,
∴△BAE≌△ADF(AAS),
∴BE=AF,AE=DF,
∵AF-AE=EF,
∴BE-DF=EF.
(2)DF=BE+EF,
证明:∵四边形ABCD是正方形,
∴AB=AD,∠BAE+∠DAF=90°,
∵BE⊥PA、DF⊥PA,
∴∠AEB=∠DFA=90°,
∴∠BAE+∠ABE=90°,
∴∠ABE=∠DAF,
∴△ABE≌△DAF(AAS),
∴BE=AF,AE=DF,
∵AE=AF+EF,
∴DF=EB+EF.
(3)EF=BE+DF.
解:(1)BE-DF=EF,
对图1中结论证明如下:
∵BE⊥PA,DF⊥PA,
∴∠BEA=∠AFD=90°,
∵四边形ABCD是正方形,
∴AB=AD,∠BAD=90°,
∴∠BAE+∠DAF=∠ADF+∠DAF=90°,
∴∠BAE=∠ADF,
在△BAE和△ADF中
∠BEA=∠AFD
∠BAE=∠ADF
AB=AD
,
∴△BAE≌△ADF(AAS),
∴BE=AF,AE=DF,
∵AF-AE=EF,
∴BE-DF=EF.
(2)DF=BE+EF,
证明:∵四边形ABCD是正方形,
∴AB=AD,∠BAE+∠DAF=90°,
∵BE⊥PA、DF⊥PA,
∴∠AEB=∠DFA=90°,
∴∠BAE+∠ABE=90°,
∴∠ABE=∠DAF,
∴△ABE≌△DAF(AAS),
∴BE=AF,AE=DF,
∵AE=AF+EF,
∴DF=EB+EF.
(3)EF=BE+DF.
考点梳理
考点
分析
点评
正方形的性质;全等三角形的判定与性质.
(1)根据正方形的性质可知证出△ABE≌△ADF,利用全等三角形的性质,BE=AF,AE=DF,得出BE-DF=EF;
(2)同(1)可得出图(2)中DF-BE=EF;
(3)同(1)可得出图(3)中DF+BE=EF.
此题主要考查了正方形的性质和全等三角形的判定.充分利用正方形的特殊性质来找到全等的条件从而判定全等后利用全等三角形的性质解题.
找相似题
(2013·资阳)如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )
(2013·台湾)附图为正三角形ABC与正方形DEFG的重叠情形,其中D、E两点分别在AB、BC上,且BD=BE.若AC=18,GF=6,则F点到AC的距离为何?( )
(2013·齐齐哈尔)在锐角三角形ABC中,AH是BC边上的高,分别以AB、AC为一边,向外作正方形ABDE和ACFG,连接CE、BG和EG,EG与HA的延长线交于点M,下列结论:①BG=CE ②BG⊥CE ③AM是△AEG的中线 ④∠EAM=∠ABC,其中正确结论的个数是( )
(2013·连云港)如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为( )
(2013·东营)如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下列结论:
(1)AE=BF;(2)AE⊥BF;(3)AO=OE;(4)S
△AOB
=S
四边形DEOF
中正确的有( )