试题

题目:
青果学院如图,点P是正方形ABCD的对角线BD上一点,PE⊥BC于点E,PF⊥CD于点F,连接EF.给出下列五个结论:①AP=EF;②AP⊥EF; ③△APD一定是等腰三角形; ④∠PFE=∠BAP;⑤PD=
2
EC.其中正确结论的序号是
①②④⑤
①②④⑤

答案
①②④⑤

解:
①正确,连接PC,可得PC=EF,PC=PA,∴AP=EF;
青果学院
②正确;延长AP,交EF于点N,则∠EPN=∠BAP=∠PCE=∠PFE,可得AP⊥EF;
③错误,由于P是动点,所以△APD一定是等腰三角形错误;
④正确;∠PFE=∠PCE=∠BAP;⑤正确;PD=
2
PF=
2
CE;
故答案为①②④⑤.
考点梳理
正方形的性质;全等三角形的判定与性质.
根据正方形的性质与正方形关于对角线对称可得所给选项的正误.
综合考查了正方形的性质;充分利用正方形是轴对称图形可得相关验证.
几何综合题.
找相似题