试题
题目:
如图,在等边△ABC的外侧作正方形ABDE,AD与CE交于F,则∠ABF的度数为
15°
15°
.
答案
15°
解:∵△ABC是等边三角形,ABDE是正方形,
∴AC=AE,
∴∠CAB=60°,∠EAB=90°,
∴∠CAE=150°,
∴∠ACE=∠AEC=15°,
∵△AEF和△ABF中,
AE=AB
∠EAF=∠BAF
AF=AF
,
∴△AEF≌△ABF(SAS),
∴∠ABF=∠AEF=15°.
故答案为:15°.
考点梳理
考点
分析
点评
正方形的性质;全等三角形的判定与性质;等边三角形的性质.
本题需先根据△ABC是等边三角形,从而得出∠ACB的度数和∠AFB的度数,再根据ABDE是正方形,得出∠BAD的度数,最后即可求出答案.
本题主要考查了正方形的性质和等边三角形的性质,在解题时要能根据等边三角形和正方形的知识点综合起来解题是本题的关键.
找相似题
(2013·资阳)如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )
(2013·台湾)附图为正三角形ABC与正方形DEFG的重叠情形,其中D、E两点分别在AB、BC上,且BD=BE.若AC=18,GF=6,则F点到AC的距离为何?( )
(2013·齐齐哈尔)在锐角三角形ABC中,AH是BC边上的高,分别以AB、AC为一边,向外作正方形ABDE和ACFG,连接CE、BG和EG,EG与HA的延长线交于点M,下列结论:①BG=CE ②BG⊥CE ③AM是△AEG的中线 ④∠EAM=∠ABC,其中正确结论的个数是( )
(2013·连云港)如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为( )
(2013·东营)如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下列结论:
(1)AE=BF;(2)AE⊥BF;(3)AO=OE;(4)S
△AOB
=S
四边形DEOF
中正确的有( )