试题
题目:
正方形四条边都相等,四个角都是90°,如图,已知正方形ABCD在直线MN的上方,BC在直线MN上,点E是BC上一点,以AE为边在BC所在的直线MN的上方作正方形AEFG.
(1)判断△ADG与△ABE是否全等,并说明理由;
(2)过点F作FH⊥MN,垂足为点H,观察并猜测线段FH与线段CH的数量关系,并说明理由.
答案
解:(1)△ADG≌△ABE.
∵四边形ABCD和四边形AEFG是正方形,
∴AB=AD,AE=AG,∠ABE=∠ADG=90°,
∴∠BAE+∠EAD=∠DAG+∠EAD,
∴∠BAE=∠DAG,
在△ADG和△ABE中,
AD=AB
∠DAG=∠BAE
AG=AE
,
∴△ADG≌△ABE;
(2)FH=CH.
由(1)可得∠FEH=∠BAE=∠DAG,
在Rt△EFH和Rt△AGD中,
∵
∠FEH=∠GAD
∠FHE=∠GDA
EF=AG
,
∴△EFH≌△AGD,
∴EH=AD=BC,FH=GD=BE,
∴BC-EC=EH-EC,即BE=CH,
∴FH=CH.
解:(1)△ADG≌△ABE.
∵四边形ABCD和四边形AEFG是正方形,
∴AB=AD,AE=AG,∠ABE=∠ADG=90°,
∴∠BAE+∠EAD=∠DAG+∠EAD,
∴∠BAE=∠DAG,
在△ADG和△ABE中,
AD=AB
∠DAG=∠BAE
AG=AE
,
∴△ADG≌△ABE;
(2)FH=CH.
由(1)可得∠FEH=∠BAE=∠DAG,
在Rt△EFH和Rt△AGD中,
∵
∠FEH=∠GAD
∠FHE=∠GDA
EF=AG
,
∴△EFH≌△AGD,
∴EH=AD=BC,FH=GD=BE,
∴BC-EC=EH-EC,即BE=CH,
∴FH=CH.
考点梳理
考点
分析
点评
正方形的性质;全等三角形的判定与性质.
①利用正方形的性质及SAS定理求出△ADG≌△ABE,再利用全等三角形的性质即可解答;
②利用正方形的性质及SAS定理求出△ADG≌△ABE,再利用全等三角形的性质即可解答;
本题考查了正方形的性质、全等三角形的判定及性质,解答本题的关键是根据正方形的性质找到三角形全等的条件,有一定难度.
找相似题
(2013·资阳)如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )
(2013·台湾)附图为正三角形ABC与正方形DEFG的重叠情形,其中D、E两点分别在AB、BC上,且BD=BE.若AC=18,GF=6,则F点到AC的距离为何?( )
(2013·齐齐哈尔)在锐角三角形ABC中,AH是BC边上的高,分别以AB、AC为一边,向外作正方形ABDE和ACFG,连接CE、BG和EG,EG与HA的延长线交于点M,下列结论:①BG=CE ②BG⊥CE ③AM是△AEG的中线 ④∠EAM=∠ABC,其中正确结论的个数是( )
(2013·连云港)如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为( )
(2013·东营)如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下列结论:
(1)AE=BF;(2)AE⊥BF;(3)AO=OE;(4)S
△AOB
=S
四边形DEOF
中正确的有( )