试题
题目:
如图,已知正方形ABCD和正方形CGEF(CG>BC),B、C、G 在同一直线上,M 为线段AE的中点,试问:线段MD与线段MF的大小关系,并证明你的结论.
答案
答:MF=MD.
证明:延长DM交EF于点P,
∵四边形ABCD和四边形FCGE是正方形,
∴AD∥EF,∠MAD=∠MEP.∠CFE=90°.
∴△DFP是直角三角形.
∵M为AE的中点,
∴AM=EM.
∵在△ADM和△EPM中,
∠MAD=∠MEP
AM=EM
∠AMD=∠EMP
,
∴△ADM≌△EPM(ASA),
∴DM=PM.
∴M是DP的中点.
∴MF=
1
2
DP=MD
.
答:MF=MD.
证明:延长DM交EF于点P,
∵四边形ABCD和四边形FCGE是正方形,
∴AD∥EF,∠MAD=∠MEP.∠CFE=90°.
∴△DFP是直角三角形.
∵M为AE的中点,
∴AM=EM.
∵在△ADM和△EPM中,
∠MAD=∠MEP
AM=EM
∠AMD=∠EMP
,
∴△ADM≌△EPM(ASA),
∴DM=PM.
∴M是DP的中点.
∴MF=
1
2
DP=MD
.
考点梳理
考点
分析
点评
专题
正方形的性质;全等三角形的判定与性质;直角三角形斜边上的中线.
延长DM交EF于点P,根据正方形的性质及M 为线段AE的中点可以得出△ADM≌△EPM,由其全等三角形的性质可以得出DP是直角△DFP斜边上的中线,从而得出结论.
本题考查了正方形的性质的运用,相似三角形的判定及性质的运用,直角三角形的性质的运用,解答时正确作辅助线是关键,证明三角形相似是重点.
探究型.
找相似题
(2013·资阳)如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )
(2013·台湾)附图为正三角形ABC与正方形DEFG的重叠情形,其中D、E两点分别在AB、BC上,且BD=BE.若AC=18,GF=6,则F点到AC的距离为何?( )
(2013·齐齐哈尔)在锐角三角形ABC中,AH是BC边上的高,分别以AB、AC为一边,向外作正方形ABDE和ACFG,连接CE、BG和EG,EG与HA的延长线交于点M,下列结论:①BG=CE ②BG⊥CE ③AM是△AEG的中线 ④∠EAM=∠ABC,其中正确结论的个数是( )
(2013·连云港)如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为( )
(2013·东营)如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下列结论:
(1)AE=BF;(2)AE⊥BF;(3)AO=OE;(4)S
△AOB
=S
四边形DEOF
中正确的有( )