试题
题目:
如图.正方形OEFG的顶点O在正方形ABCD的对称中心,且它们的边长均为1,当正方形OEFG绕顶点O任意旋转时,两个正方形重叠部分的面积是否发生变化?若变,说明理由;若不变,证明结论并求出重叠部分的面积.
答案
解:重叠部分面积不变,总是等于正方形面积的
1
4
.理由如下:
∵四边形ABCD和四边形OEFG都是正方形,
∴OB=OC,∠OBC=∠OCD=45°,∠BOC=∠EOG=90°,
∴∠BOM=∠NOC.
在△OBM与△OCN中,
∠OBC=∠OCD
OB=OC
∠BOM=∠NOC
,
∴△OBM≌△OCN,
∴四边形OMCN的面积等于三角形BOC的面积,
即重叠部分面积不变,总是等于正方形面积的
1
4
.
解:重叠部分面积不变,总是等于正方形面积的
1
4
.理由如下:
∵四边形ABCD和四边形OEFG都是正方形,
∴OB=OC,∠OBC=∠OCD=45°,∠BOC=∠EOG=90°,
∴∠BOM=∠NOC.
在△OBM与△OCN中,
∠OBC=∠OCD
OB=OC
∠BOM=∠NOC
,
∴△OBM≌△OCN,
∴四边形OMCN的面积等于三角形BOC的面积,
即重叠部分面积不变,总是等于正方形面积的
1
4
.
考点梳理
考点
分析
点评
专题
正方形的性质;全等三角形的判定与性质.
根据正方形的性质得出OB=OC,∠OBC=∠OCD=45°,∠BOC=∠EOG=90°,推出∠BOM=∠NOC,证出△OBM≌△OCN.
本题主要考查对正方形的性质,全等三角形的性质和判定等知识点的理解和掌握,能推出四边形OMCN的面积等于三角形BOC的面积是解此题的关键.
证明题.
找相似题
(2013·资阳)如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )
(2013·台湾)附图为正三角形ABC与正方形DEFG的重叠情形,其中D、E两点分别在AB、BC上,且BD=BE.若AC=18,GF=6,则F点到AC的距离为何?( )
(2013·齐齐哈尔)在锐角三角形ABC中,AH是BC边上的高,分别以AB、AC为一边,向外作正方形ABDE和ACFG,连接CE、BG和EG,EG与HA的延长线交于点M,下列结论:①BG=CE ②BG⊥CE ③AM是△AEG的中线 ④∠EAM=∠ABC,其中正确结论的个数是( )
(2013·连云港)如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为( )
(2013·东营)如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下列结论:
(1)AE=BF;(2)AE⊥BF;(3)AO=OE;(4)S
△AOB
=S
四边形DEOF
中正确的有( )