试题
题目:
如图,E、F是边长为4的正方形ABCD边AD、CD上的动点,若AE=EF,EF⊥FM交BC于M,则△FMC的周长为
8
8
.
答案
8
解:作AH⊥FM,设∠EAF=α,
∴∠AHF=∠AHM=90°
∵四边形ABCD是正方形,
∴AD=AB=BC=CD=4,∠D=∠B=90°
∵EF⊥FM,
∴∠EFM=90°
∵AE=AF,
∴∠EAF=∠EFA=a,
∴∠AFH=90°-α=∠AFD,
在△ADF和△AHF中
∠D=∠AHF
∠AFD=∠AFH
AF=AF
,
∴△AFH≌△AFD﹙AAS﹚
∴DF=HF,AD=AH=4=AB;
在Rt△AHM和Rt△ABM中
AM=AM
AH=AB
∴Rt△AMH≌Rt△AMB,
∴HM=BM.
∵△FMC的周长=CF+FM+MC,
∴△FMC的周长=CF+FD+MB+MC=CD+CB=8.
故答案为:8.
考点梳理
考点
分析
点评
正方形的性质;全等三角形的判定与性质.
作AH⊥FM,连接AF,AM,根据正方形的性质分别证明△AFH≌△AFD和Rt△AMH≌Rt△AMB,由全等三角形的性质就可以得出结论.
本题考查了正方形的性质的运用,等腰三角形的性质的运用,全等三角形的判定及性质的运用,解答时正确作辅助线是解答本题的关键.
找相似题
(2013·资阳)如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )
(2013·台湾)附图为正三角形ABC与正方形DEFG的重叠情形,其中D、E两点分别在AB、BC上,且BD=BE.若AC=18,GF=6,则F点到AC的距离为何?( )
(2013·齐齐哈尔)在锐角三角形ABC中,AH是BC边上的高,分别以AB、AC为一边,向外作正方形ABDE和ACFG,连接CE、BG和EG,EG与HA的延长线交于点M,下列结论:①BG=CE ②BG⊥CE ③AM是△AEG的中线 ④∠EAM=∠ABC,其中正确结论的个数是( )
(2013·连云港)如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为( )
(2013·东营)如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下列结论:
(1)AE=BF;(2)AE⊥BF;(3)AO=OE;(4)S
△AOB
=S
四边形DEOF
中正确的有( )