试题
题目:
如图是分别由两个具有公共顶点A的正方形组成的图形,且其中一个正方形的顶点在另一个正方形的边BC上(点D不与点B、C重合).则∠DCE=
135°
135°
.
答案
135°
解:作EH⊥BC于H,
∵正方形ABCN,正方形ADEM,
∴∠ADE=∠ABD=90°,
∴∠BAD+∠ADB=90°,∠EDH+∠ADB=90°,
∴∠EDH=∠BAD,
又∵AD=DE,∠DHE=∠DBA=90°,
∴△DEH≌△ABD,
∴EH=BD,DH=AB=BC,
∴CH=BD=EH,
∵∠DHE=90°,
∴∠ECH=45°,
∴∠DCE=135°.
故答案为135°.
考点梳理
考点
分析
点评
正方形的性质;全等三角形的判定与性质.
首先作辅助线EH⊥BC于H,通过求证△DEH≌△ABD,推出EH=BD,DH=AB=BC,即得,CH=BD=EH,由EH⊥BC,推出△ECH为等腰直角三角形,即得,∠ECH=45°,即可推出结论.
本题主要考查全等三角形的判定与性质、邻补角的性质、正方形的性质,关键在于根据已知推出△DEH≌△ABD,根据三角形全等推出△ECH为等腰直角三角形.
找相似题
(2013·资阳)如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )
(2013·台湾)附图为正三角形ABC与正方形DEFG的重叠情形,其中D、E两点分别在AB、BC上,且BD=BE.若AC=18,GF=6,则F点到AC的距离为何?( )
(2013·齐齐哈尔)在锐角三角形ABC中,AH是BC边上的高,分别以AB、AC为一边,向外作正方形ABDE和ACFG,连接CE、BG和EG,EG与HA的延长线交于点M,下列结论:①BG=CE ②BG⊥CE ③AM是△AEG的中线 ④∠EAM=∠ABC,其中正确结论的个数是( )
(2013·连云港)如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为( )
(2013·东营)如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下列结论:
(1)AE=BF;(2)AE⊥BF;(3)AO=OE;(4)S
△AOB
=S
四边形DEOF
中正确的有( )