试题
题目:
小芳参加图书馆标志设计大赛,他在边长为2的正方形ABCD内作等边△BCE,并与正方形的对角线交于F、G点,制成了图中阴影部分的标志,则这个标志AFEGD的面积是
6-3
3
6-3
3
.
答案
6-3
3
解:过点G作GN⊥CD于N,过点F作FM⊥AB于M,
∵在边长为2的正方形ABCD内作等边△BCE,
∴AB=BC=CD=AD=BE=EC=2,∠ECB=60°,∠ODC=45°,
∴S
△BEC
=
1
2
×2×
3
=
3
,S
正方形
=AB
2
=4,
设GN=x,
∵∠NDG=∠NGD=45°,∠NCG=30°,
∴DN=NG=x,CN=
3
NG=
3
x,
∴x+
3
x=2,
解得:x=
3
-1,
∴S
△CGD
=
1
2
CD·GN=
1
2
×2×(
3
-1)=
3
-1,
同理:S
△ABF
=
3
-1,
∴S
阴影
=S
正方形ABCD
-S
△ABF
-S
△BCE
-S
△CDG
=4-(
3
-1)-
3
-(
3
-1)=6-3
3
.
故答案为:6-3
3
.
考点梳理
考点
分析
点评
专题
正方形的性质;等边三角形的性质.
首先过点G作GN⊥CD于N,过点F作FM⊥AB于M,由在边长为2的正方形ABCD内作等边△BCE,即可求得△BEC与正方形ABCD的面积,由直角三角形的性质,即可求得GN的长,即可求得△CDG的面积,同理即可求得△ABF的面积,又由S
阴影
=S
正方形ABCD
-S
△ABF
-S
△BCE
-S
△CDG
,即可求得阴影图形的面积.
此题考查了正方形,等边三角形,以及直角三角形的性质等知识.此题综合性较强,难度适中,解题的关键是注意方程思想与数形结合思想的应用.
压轴题.
找相似题
(2013·资阳)如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )
(2013·台湾)附图为正三角形ABC与正方形DEFG的重叠情形,其中D、E两点分别在AB、BC上,且BD=BE.若AC=18,GF=6,则F点到AC的距离为何?( )
(2013·齐齐哈尔)在锐角三角形ABC中,AH是BC边上的高,分别以AB、AC为一边,向外作正方形ABDE和ACFG,连接CE、BG和EG,EG与HA的延长线交于点M,下列结论:①BG=CE ②BG⊥CE ③AM是△AEG的中线 ④∠EAM=∠ABC,其中正确结论的个数是( )
(2013·连云港)如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为( )
(2013·东营)如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下列结论:
(1)AE=BF;(2)AE⊥BF;(3)AO=OE;(4)S
△AOB
=S
四边形DEOF
中正确的有( )