试题
题目:
如图,以正方形ABCD的边CD为一边,在正方形ABCD内作等边△CDE,BE交AC于点M,则∠AMD为
120°
120°
.
答案
120°
解:∵四边形ABCD是正方形,
∴AB=CB=CD=AD,∠BAC=∠DAC=45°,∠ABC=90°,
∵△CDE是等边三角形,
∴CD=CE=DE,∠DEC=∠DCE=∠EDC=60°,
∴CB=CE,∠BCE=30°,
∴∠CBM=∠CEB=75°,
∴∠ABM=15°,
∴∠AMB=120°.
∵△ABM≌△ADM,
∴∠AMB=∠AMD=120°.
故答案为:120°.
考点梳理
考点
分析
点评
正方形的性质;等边三角形的性质.
由△CDE是等边三角形可以得出CD=CE=DE,∠DEC=∠DCE=∠EDC=60°,由四边形ABCD是正方形,可以得出AB=CB=CD=AD,∠BAC=∠DAC=45°,可以得出CE=CB,求出∠CBM=75°,得到∠ABM=15°,求出∠AMB=120,通过证明△ABM≌△ADM就可以求出∠AMD的度数.
本题考查了正方形的性质,等边三角形的性质及等腰三角形的性质的运用.
找相似题
(2013·资阳)如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )
(2013·台湾)附图为正三角形ABC与正方形DEFG的重叠情形,其中D、E两点分别在AB、BC上,且BD=BE.若AC=18,GF=6,则F点到AC的距离为何?( )
(2013·齐齐哈尔)在锐角三角形ABC中,AH是BC边上的高,分别以AB、AC为一边,向外作正方形ABDE和ACFG,连接CE、BG和EG,EG与HA的延长线交于点M,下列结论:①BG=CE ②BG⊥CE ③AM是△AEG的中线 ④∠EAM=∠ABC,其中正确结论的个数是( )
(2013·连云港)如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为( )
(2013·东营)如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下列结论:
(1)AE=BF;(2)AE⊥BF;(3)AO=OE;(4)S
△AOB
=S
四边形DEOF
中正确的有( )