试题
题目:
如图,E为正方形ABCD的对角线BD上一点,且BE=BC,点F在CD上,且EF⊥BD.
求证:DE=CF.
答案
证明:在正方形ABCD中,∠C=90°,
∵EF⊥BD,
∴∠BEF=90°,
∴∠C=∠BEF=90°,
在Rt△BEF和Rt△BCF中,
BF=BF
BE=BC
,
∴Rt△BEF≌Rt△BCF(HL),
∴EF=CF,
∵BD为正方形ABCD的对角线,
∴∠BDF=45°,
∴∠DFE=90°-45°=45°,
∴∠BDF=∠DFE,
∴DE=EF,
∴DE=CF.
证明:在正方形ABCD中,∠C=90°,
∵EF⊥BD,
∴∠BEF=90°,
∴∠C=∠BEF=90°,
在Rt△BEF和Rt△BCF中,
BF=BF
BE=BC
,
∴Rt△BEF≌Rt△BCF(HL),
∴EF=CF,
∵BD为正方形ABCD的对角线,
∴∠BDF=45°,
∴∠DFE=90°-45°=45°,
∴∠BDF=∠DFE,
∴DE=EF,
∴DE=CF.
考点梳理
考点
分析
点评
专题
正方形的性质;全等三角形的判定与性质.
利用“HL”证明Rt△BEF和Rt△BCF全等,根据全等三角形对应边相等可得EF=CF,再根据正方形的对角线平分一组对角求出∠BDF=45°,然后求出∠DFE=45°,从而得到∠BDF=∠DFE,根据等角对等边的性质可得DE=EF,从而得证.
本题考查了正方形的性质,全等三角形的判定与性质,等角对等边的性质,证明得到Rt△BEF和Rt△BCF全等是解题的关键.
证明题.
找相似题
(2013·资阳)如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )
(2013·台湾)附图为正三角形ABC与正方形DEFG的重叠情形,其中D、E两点分别在AB、BC上,且BD=BE.若AC=18,GF=6,则F点到AC的距离为何?( )
(2013·齐齐哈尔)在锐角三角形ABC中,AH是BC边上的高,分别以AB、AC为一边,向外作正方形ABDE和ACFG,连接CE、BG和EG,EG与HA的延长线交于点M,下列结论:①BG=CE ②BG⊥CE ③AM是△AEG的中线 ④∠EAM=∠ABC,其中正确结论的个数是( )
(2013·连云港)如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为( )
(2013·东营)如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下列结论:
(1)AE=BF;(2)AE⊥BF;(3)AO=OE;(4)S
△AOB
=S
四边形DEOF
中正确的有( )