试题

题目:
青果学院(2011·金台区二模)如图所示,正方形ABCD的面积为12,△ABE是等边三角形,点E在正方形ABCD内,在对角线AC上有一点P,使PD+PE的和最小,则这个最小值为
2
3
2
3

答案
2
3

青果学院解:连接BD,与AC交于点F.
∵点B与D关于AC对称,
∴PD=PB,
∴PD+PE=PB+PE=BE最小.
∵正方形ABCD的面积为12,
∴AB=2
3

又∵△ABE是等边三角形,
∴BE=AB=2
3

故所求最小值为2
3

故答案为:2
3
考点梳理
轴对称-最短路线问题;正方形的性质.
由于点B与D关于AC对称,所以连接BD,与AC的交点即为F点.此时PD+PE=BE最小,而BE是等边△ABE的边,BE=AB,由正方形ABCD的面积为12,可求出AB的长,从而得出结果.
此题主要考查轴对称--最短路线问题,要灵活运用对称性解决此类问题.
计算题;压轴题.
找相似题