试题
题目:
如图,正方形ABCD的边长为1,E、F分别是BC、CD上的点,且△AEF是等边三角形,则BE的长为
2-
3
2-
3
.
答案
2-
3
解:∵四边形正方形ABCD,
∴∠B=∠D=90°,AB=AD,
∵△AEF是等边三角形,
∴AE=EF=AF,
∴△ABE≌△ADF,
∴BE=DF,
设BE=x,那么DF=x,CE=CF=1-x,
在Rt△ABE中,AE
2
=AB
2
+BE
2
,
在Rt△EFC中,FE
2
=CF
2
+CE
2
,
∴AB
2
+BE
2
=CF
2
+CE
2
,
∴x
2
+1=2(1-x)
2
,
∴x
2
-4x+1=0,
∴x=2±
3
,而x<1,
∴x=2-
3
,
即BE的长为=2-
3
.
故答案为2-
3
.
考点梳理
考点
分析
点评
专题
正方形的性质;全等三角形的判定与性质;等边三角形的性质;勾股定理.
由于四边形ABCD是正方形,△AEF是等边三角形,所以首先根据已知条件可以证明△ABE≌△ADF,再根据全等三角形的性质得到BE=DF,设BE=x,那么DF=x,CE=CF=1-x,那么在Rt△ABE和Rt△ADF利用勾股定理可以列出关于x的方程,解方程即可求出BE.
本题主要考查了正方形、等边三角形的知识,把求线段长放在正方形的背景中,利用勾股定理列出一元二次方程解决问题,难度适中.
应用题.
找相似题
(2013·资阳)如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )
(2013·台湾)附图为正三角形ABC与正方形DEFG的重叠情形,其中D、E两点分别在AB、BC上,且BD=BE.若AC=18,GF=6,则F点到AC的距离为何?( )
(2013·齐齐哈尔)在锐角三角形ABC中,AH是BC边上的高,分别以AB、AC为一边,向外作正方形ABDE和ACFG,连接CE、BG和EG,EG与HA的延长线交于点M,下列结论:①BG=CE ②BG⊥CE ③AM是△AEG的中线 ④∠EAM=∠ABC,其中正确结论的个数是( )
(2013·连云港)如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为( )
(2013·东营)如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下列结论:
(1)AE=BF;(2)AE⊥BF;(3)AO=OE;(4)S
△AOB
=S
四边形DEOF
中正确的有( )