试题

题目:
青果学院勾股定理有着悠久的历史,它曾引起很多人的兴趣,如图所示,AB为Rt△ABC的斜边,四边形ABGM,APQC,BCDE均为正方形,四边形RFHN是长方形,若BC=3,AC=4,则图中空白部分的面积是
60
60

答案
60

解:如图,在Rt△ABC中,BC=3,AC=4,则根据勾股定理得到AB=
AC2+BC2
=5.青果学院
延长CB交FH于O,
∵四边形ABGM,APQC,BCDE均为正方形,
∴BG=AB=GM,∠ACB=∠ABG=∠F=∠H=∠MGB=90°,BC∥DE,
∴∠BOG=∠F=90°,
∴∠CAB+∠ABC=90°,∠ABC+∠GBO=180°-90°=90°,
∴∠CAB=∠GBO,
在△ACB和△BOG中,
∠CAB=∠GBO
∠ACB=∠BOG
AB=BG

∴△ACB≌△BOG(AAS),
∴AC=OB=4,OG=BC=3,
同理可证△MHG≌△GOB,
∴MH=OG=3,HG=OB=4,
∴FR=4+3+4=11,FH=3+3+4=10,
∴S空白=S长方形HFRN-S正方形BCDE-S正方形ACQP-S正方形ABGM
=11×10-3×3-4×4-5×5=60,
故答案为:60.
考点梳理
勾股定理;正方形的性质.
根据勾股定理求出AB,求出△ACB≌△BOG≌△GHM,求出AC=OB=HG=4,BC=OG=MH=3,分别求出长方形FHNR,正方形BCDE,正方形ACQP,正方形ABGM的面积,即可求出答案.
本题考查了正方形性质,全等三角形的性质和判定,勾股定理的应用,关键是求出长方形HFRN的边长.
找相似题