试题
题目:
如图,正方形ABCD的边长为8,DE=2,在对角线AC上有一点P,则PD+PE的最小值为
10
10
.
答案
10
解:作点E关于直线AC的对称点E′,连接DE′,则DE′的长即为PD+PE的最小值,
∵E、E′关于直线AC对称,
∴AC是线段EE′的垂直平分线,
∵四边形ABCD是正方形,
∴AC是∠BAD的平分线,
∴点E′在AB边上,
∵正方形ABCD的边长为8,DE=2,
∴AE′=AE=8-2=6,
在Rt△ADE′中,
DE′=
AD
2
+AE
′
2
=
8
2
+
6
2
=10.
故答案为:10.
考点梳理
考点
分析
点评
专题
轴对称-最短路线问题;正方形的性质.
先作点E关于直线AC的对称点E′,连接DE′,则DE′的长即为PD+PE的最小值,再根据正方形的性质可得出E′在AB上,BE′=DE=2,进而可得出AE′的长,在Rt△AEE′中,利用勾股定理即可求出DE′的长.
本题考查的是轴对称-最短路线问题及正方形的性质,根据题意作出辅助线,构造出直角三角形,再利用勾股定理求解是解答此题的关键.
探究型.
找相似题
(2013·资阳)如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )
(2013·台湾)附图为正三角形ABC与正方形DEFG的重叠情形,其中D、E两点分别在AB、BC上,且BD=BE.若AC=18,GF=6,则F点到AC的距离为何?( )
(2013·齐齐哈尔)在锐角三角形ABC中,AH是BC边上的高,分别以AB、AC为一边,向外作正方形ABDE和ACFG,连接CE、BG和EG,EG与HA的延长线交于点M,下列结论:①BG=CE ②BG⊥CE ③AM是△AEG的中线 ④∠EAM=∠ABC,其中正确结论的个数是( )
(2013·连云港)如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为( )
(2013·东营)如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下列结论:
(1)AE=BF;(2)AE⊥BF;(3)AO=OE;(4)S
△AOB
=S
四边形DEOF
中正确的有( )