试题
题目:
如图,正方形ABCD的对角线AC=6
2
,△ABE是等边三角形,点E在正方形ABCD内,若点P是对角线AC上的一个动点,则PE+PD的最小值为
6
6
.
答案
6
解:连接BD,与AC交于点F.
∵点B与D关于AC对称,
∴PD=PB,
∴PD+PE=PB+PE=BE最小,
∵正方形ABCD的对角线为6
2
,
∴AB=6.
又∵△ABE是等边三角形,
∴BE=AB=6.
故所求最小值为6.
故答案为:6.
考点梳理
考点
分析
点评
轴对称-最短路线问题;等边三角形的性质;正方形的性质.
由于点B与D关于AC对称,所以连接BD,与AC的交点即为P点.此时PD+PE=BE最小,而BE是等边△ABE的边,BE=AB,由正方形ABCD的对角线为6
2
,可求出AB的长,从而得出结果.
此题主要考查了轴对称--最短路线问题,难点主要是确定点P的位置.注意充分运用正方形的性质:正方形的对角线互相垂直平分.再根据对称性确定点P的位置即可.要灵活运用对称性解决此类问题.
找相似题
(2013·资阳)如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )
(2013·台湾)附图为正三角形ABC与正方形DEFG的重叠情形,其中D、E两点分别在AB、BC上,且BD=BE.若AC=18,GF=6,则F点到AC的距离为何?( )
(2013·齐齐哈尔)在锐角三角形ABC中,AH是BC边上的高,分别以AB、AC为一边,向外作正方形ABDE和ACFG,连接CE、BG和EG,EG与HA的延长线交于点M,下列结论:①BG=CE ②BG⊥CE ③AM是△AEG的中线 ④∠EAM=∠ABC,其中正确结论的个数是( )
(2013·连云港)如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为( )
(2013·东营)如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下列结论:
(1)AE=BF;(2)AE⊥BF;(3)AO=OE;(4)S
△AOB
=S
四边形DEOF
中正确的有( )