试题
题目:
在正方形ABCD中,F为AD上的点,BF交AC于E,连接ED,当∠BED=120°时,∠EFD=
105
105
°.
答案
105
解:∵四边形ABCD是正方形,
∴BC=CD,∠ECB=∠ECD=45°.
∴在△BEC与△DEC中,
BC=CD
∠ECB=∠ECD
EC=BC
,
∴△BEC≌△DEC(SAS),
∴∠BEC=∠DEC=
1
2
∠BED,
∵∠BED=120°,
∴∠BEC=60°=∠AEF,
∴∠EFD=60°+45°=105°,
故答案为105°.
考点梳理
考点
分析
点评
正方形的性质;全等三角形的判定与性质.
首先在证明△BEC≌△DEC时,根据题意知,运用SAS公理就行;再根据根据全等三角形的性质知对应角相等,即∠BEC=∠DEC=
1
2
∠BED,又由对顶角相等、三角形的一个内角的补角是另外两个内角的和求得∠EFD=∠BEC+∠CAD.
本题考查了正方形的性质以及全等三角形的判断和性质,解答本题要充分利用正方形的特殊性质、全等三角形的判定与性质、以及对顶角相等等知识.
找相似题
(2013·资阳)如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )
(2013·台湾)附图为正三角形ABC与正方形DEFG的重叠情形,其中D、E两点分别在AB、BC上,且BD=BE.若AC=18,GF=6,则F点到AC的距离为何?( )
(2013·齐齐哈尔)在锐角三角形ABC中,AH是BC边上的高,分别以AB、AC为一边,向外作正方形ABDE和ACFG,连接CE、BG和EG,EG与HA的延长线交于点M,下列结论:①BG=CE ②BG⊥CE ③AM是△AEG的中线 ④∠EAM=∠ABC,其中正确结论的个数是( )
(2013·连云港)如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为( )
(2013·东营)如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下列结论:
(1)AE=BF;(2)AE⊥BF;(3)AO=OE;(4)S
△AOB
=S
四边形DEOF
中正确的有( )