试题
题目:
在正方形ABCD中,点E是BC上的一定点,且BE=5,EC=7,点P是BD上的动点,作图说明PE+PC的最小值并求出这个最小值.
答案
解:∵点C、点A关于BD对称,
∴AE与BD的交点即是点P的位置,此时满足PE+PC的值最小,
又∵AB=BC=BE+EC=12,
∴在RT△ABE中,AE=AP+PE=PC+PE=
AB
2
+BE
2
=13.
即PE+PC的最小值为13.
解:∵点C、点A关于BD对称,
∴AE与BD的交点即是点P的位置,此时满足PE+PC的值最小,
又∵AB=BC=BE+EC=12,
∴在RT△ABE中,AE=AP+PE=PC+PE=
AB
2
+BE
2
=13.
即PE+PC的最小值为13.
考点梳理
考点
分析
点评
轴对称-最短路线问题;正方形的性质.
根据正方形的性质可得点C、点A关于BD对称,从而连接AE,则AE与BD交点即是点P的位置,利用勾股定理求解AE即可得出答案.
此题主要考查了正方形的性质和轴对称及勾股定理等知识的综合应用,利用轴对称的知识找出最短路径是解题关键,难度一般.
找相似题
(2013·资阳)如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )
(2013·台湾)附图为正三角形ABC与正方形DEFG的重叠情形,其中D、E两点分别在AB、BC上,且BD=BE.若AC=18,GF=6,则F点到AC的距离为何?( )
(2013·齐齐哈尔)在锐角三角形ABC中,AH是BC边上的高,分别以AB、AC为一边,向外作正方形ABDE和ACFG,连接CE、BG和EG,EG与HA的延长线交于点M,下列结论:①BG=CE ②BG⊥CE ③AM是△AEG的中线 ④∠EAM=∠ABC,其中正确结论的个数是( )
(2013·连云港)如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为( )
(2013·东营)如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下列结论:
(1)AE=BF;(2)AE⊥BF;(3)AO=OE;(4)S
△AOB
=S
四边形DEOF
中正确的有( )