答案
证明:(1)∵AH=AC,AG⊥CH,
∴CG=
CH,∠BAF=90°-∠H.
∵在正方形ABCD中,∠HAC=∠ABC=90°,
∴∠BCF=90°-∠H.
∴∠BAF=∠BCG.
又∵AB=BC,
∴△ABF≌△CBH.
∴AF=CH.
∴CG=
AF.

(2)取CF的中点P,连接OP,
在正方形ABCD中,∠ABO=∠ACO=
×90°=45°.
∵AH=AC,AG⊥CH,
∴∠BAE=∠FAC,
∵∠BEF=∠ABE+∠BAF,∠BFE=∠FCA+∠FAC,
∴∠BEF=∠BFE.
∵AO=OC,
∴OP∥AF,
∴∠BOP=∠BEF,∠BPO=∠BFE.
∴∠BOP=∠BPO.
∴OE=FP,
∴
OE=CF.
证明:(1)∵AH=AC,AG⊥CH,
∴CG=
CH,∠BAF=90°-∠H.
∵在正方形ABCD中,∠HAC=∠ABC=90°,
∴∠BCF=90°-∠H.
∴∠BAF=∠BCG.
又∵AB=BC,
∴△ABF≌△CBH.
∴AF=CH.
∴CG=
AF.

(2)取CF的中点P,连接OP,
在正方形ABCD中,∠ABO=∠ACO=
×90°=45°.
∵AH=AC,AG⊥CH,
∴∠BAE=∠FAC,
∵∠BEF=∠ABE+∠BAF,∠BFE=∠FCA+∠FAC,
∴∠BEF=∠BFE.
∵AO=OC,
∴OP∥AF,
∴∠BOP=∠BEF,∠BPO=∠BFE.
∴∠BOP=∠BPO.
∴OE=FP,
∴
OE=CF.