试题
题目:
如图,在正方形ABCD中.
(1)若点E、F分别在AB、AD上,且AE=DF.试判断DE与CF的数量及位置关系,并说明理由;
(2)若P、Q、M、N是正方形ABCD各边上的点,PQ与MN相交,且PQ
=MN,问PQ⊥MN成立吗?为什么?
答案
解:(1)在正方形ABCD中,AD=DC,AE=DF,∠EAD=∠FDC,
所以△EAD≌△FDC,故DE=CF,
∴∠EDA=∠FCD,
又∵∠DCF+∠DFC=90°,
∴∠ADE+∠DFC=90°,
∴∠DGF=90°
即DE⊥CF.
(2)由点N,Q分别向AB,AD作垂线,
∵PQ=MN,RN=SQ,
∴△MNR≌△QPS(HL),
∴∠PQS=∠MNR,又∠1+∠PQS=90°,
所以∠1+∠MNR=90°,即MN⊥PQ.
解:(1)在正方形ABCD中,AD=DC,AE=DF,∠EAD=∠FDC,
所以△EAD≌△FDC,故DE=CF,
∴∠EDA=∠FCD,
又∵∠DCF+∠DFC=90°,
∴∠ADE+∠DFC=90°,
∴∠DGF=90°
即DE⊥CF.
(2)由点N,Q分别向AB,AD作垂线,
∵PQ=MN,RN=SQ,
∴△MNR≌△QPS(HL),
∴∠PQS=∠MNR,又∠1+∠PQS=90°,
所以∠1+∠MNR=90°,即MN⊥PQ.
考点梳理
考点
分析
点评
专题
正方形的性质.
(1)由已知易得△DAE≌△CDF,故有DE=CF.
(2)由点N,Q分别向AB,AD作垂线,构造两直角三角形全等,由角的等量代换,易得QP⊥MN.
解答本题要充分利用正方形的特殊性质.注意在正方形中的特殊三角形的应用,搞清楚矩形、菱形、正方形中的三角形的三边关系,可有助于提高解题速度和准确率.
探究型.
找相似题
(2013·资阳)如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )
(2013·台湾)附图为正三角形ABC与正方形DEFG的重叠情形,其中D、E两点分别在AB、BC上,且BD=BE.若AC=18,GF=6,则F点到AC的距离为何?( )
(2013·齐齐哈尔)在锐角三角形ABC中,AH是BC边上的高,分别以AB、AC为一边,向外作正方形ABDE和ACFG,连接CE、BG和EG,EG与HA的延长线交于点M,下列结论:①BG=CE ②BG⊥CE ③AM是△AEG的中线 ④∠EAM=∠ABC,其中正确结论的个数是( )
(2013·连云港)如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为( )
(2013·东营)如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下列结论:
(1)AE=BF;(2)AE⊥BF;(3)AO=OE;(4)S
△AOB
=S
四边形DEOF
中正确的有( )