试题
题目:
如图,正方形ABCD的边长为8,点E、F分别在AB、BC上,AE=3,CF=1,P是对角线AC上的个动点,则PE+PF的最小值是( )
A.
89
B.
73
C.
4
5
D.
8
2
答案
C
解:过E作AC的垂线交AD于点E′,连接E′F交AC于点P,过F作AD的垂线交AD于点G,则E′F即为所求,
∵四边形ABCD是正方形,
∴∠DAC=∠BAC=45°,
∵EE′⊥AC,
∴△AEE′是等腰三角形,
∴AE=AE′=3,
∵GF⊥AD,
∴GD=CF=1,
∴GE′=8-GD-AE′=8-3-1=4,
在Rt△GFE′中,GE′=4,GF=8,
∴E′F=
E
′G
2
+
GF
2
=
4
2
+
8
2
=4
5
.
故选C.
考点梳理
考点
分析
点评
专题
轴对称-最短路线问题;正方形的性质.
过E作AC的垂线交AD于点E′,连接E′F交AC于点P,过F作AD的垂线交AD于点G,则E′F即为所求,根据正方形的性质可知△AEE′是等腰三角形,AE′=3,GD=CF=2,由AD=8即可求出GE′的长,再由勾股定理即可求出E′F的长.
本题考查的是最短路线问题及正方形的性质,根据题意作出辅助线是解答此题的关键.
探究型.
找相似题
(2013·资阳)如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )
(2013·台湾)附图为正三角形ABC与正方形DEFG的重叠情形,其中D、E两点分别在AB、BC上,且BD=BE.若AC=18,GF=6,则F点到AC的距离为何?( )
(2013·齐齐哈尔)在锐角三角形ABC中,AH是BC边上的高,分别以AB、AC为一边,向外作正方形ABDE和ACFG,连接CE、BG和EG,EG与HA的延长线交于点M,下列结论:①BG=CE ②BG⊥CE ③AM是△AEG的中线 ④∠EAM=∠ABC,其中正确结论的个数是( )
(2013·连云港)如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为( )
(2013·东营)如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下列结论:
(1)AE=BF;(2)AE⊥BF;(3)AO=OE;(4)S
△AOB
=S
四边形DEOF
中正确的有( )