试题
题目:
如图,△ABC中,点O是AC边上的一个动点,过点O作直线MN∥BC,设MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F.
(1)试探索OE与OF之间的数量关系.
(2)当点O运动到何处时,四边形AECF是矩形,并给出说理过程.
(3)在(2)的前提下,如果四边形AECF是正方形,那么△ABC将是什么三角形呢?请说明理由.
答案
解:(1)∵MN∥BC,
∴∠OEC=∠ECB,∠OFC=∠FCD.
又∵CE平分∠ACB,FC平分∠ACD.
∴∠ECB=∠OCE,∠OCF=∠FCD,
∴∠OEC=∠OCE,∠OFC=∠OCF,
∴EO=OC,FO=OC,
∴EO=FO;
(2)由(1)知,OE=OC=OF,
当OC=OA,即点O为AC的中点时,
∴OE=OC=OF=OA,
∴四边形AECF是平行四边形,AC=EF,
∴这时四边形AECF是矩形;
∴当点O运动到AC中点时,
四边形AECF是矩形,
(3)由正方形AECF可知,AC⊥EF,
又∵EF∥BC,
∴∠ACB=90°,
∴△ABC是∠ACB=90°的直角三角形.
解:(1)∵MN∥BC,
∴∠OEC=∠ECB,∠OFC=∠FCD.
又∵CE平分∠ACB,FC平分∠ACD.
∴∠ECB=∠OCE,∠OCF=∠FCD,
∴∠OEC=∠OCE,∠OFC=∠OCF,
∴EO=OC,FO=OC,
∴EO=FO;
(2)由(1)知,OE=OC=OF,
当OC=OA,即点O为AC的中点时,
∴OE=OC=OF=OA,
∴四边形AECF是平行四边形,AC=EF,
∴这时四边形AECF是矩形;
∴当点O运动到AC中点时,
四边形AECF是矩形,
(3)由正方形AECF可知,AC⊥EF,
又∵EF∥BC,
∴∠ACB=90°,
∴△ABC是∠ACB=90°的直角三角形.
考点梳理
考点
分析
点评
正方形的性质;平行线的性质;矩形的判定.
(1)由直线MN∥BC,MN交∠BCA的平分线于点E,交∠BCA的外角平分线于点F,易证得△EOC与△FOC是等腰三角形,即可得OE=OF;
(2)由(1)知,OE=OC=OF,当OC=OA,即点O为AC的中点时,可得OE=OC=OF=OA,即可证得四边形AECF是矩形;
(3)由正方形AECF可知,AC⊥EF,又由于EF∥BC,得∠ACB=90°,所以△ABC是∠ACB=90°的直角三角形.
此题考查了平行线,角平分线,等腰三角形的判定与性质以及正方形、矩形的判定与性质.此题综合性较强,难度适中,解题的关键是注意数形结合思想的应用.
找相似题
(2013·资阳)如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )
(2013·台湾)附图为正三角形ABC与正方形DEFG的重叠情形,其中D、E两点分别在AB、BC上,且BD=BE.若AC=18,GF=6,则F点到AC的距离为何?( )
(2013·齐齐哈尔)在锐角三角形ABC中,AH是BC边上的高,分别以AB、AC为一边,向外作正方形ABDE和ACFG,连接CE、BG和EG,EG与HA的延长线交于点M,下列结论:①BG=CE ②BG⊥CE ③AM是△AEG的中线 ④∠EAM=∠ABC,其中正确结论的个数是( )
(2013·连云港)如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为( )
(2013·东营)如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下列结论:
(1)AE=BF;(2)AE⊥BF;(3)AO=OE;(4)S
△AOB
=S
四边形DEOF
中正确的有( )