试题
题目:
在正方形ABCD中,对角线AC、BD相交于点O,点Q是CD上任意一点,DP⊥AQ交BC于点P.
(1)求证:DQ=CP;
(2)OP与OQ有何关系?试证明你的结论.
答案
(1)证明:∵正方形ABCD中,∠ADC=90°,即∠ADP+∠PDC=90°,
又∵DP⊥AQ,
∴∠DAQ+∠ADP=90°,
∴∠DAQ=∠PDC,
∵在△ADQ和△CDP中,
∠DAQ=∠PDC
AD=DC
∠ADQ=∠DCP
,
∴△ADQ≌△CDP(ASA),
∴DQ=CP;
(2)OP=OQ且OP⊥OQ.
证明:∵四边形ABCD是正方形,
∴∠ODQ=∠OCP,
∵在△OCP和△ODQ中,
OD=OP
∠ODQ=∠OCP
DQ=CP
∴△OCP≌△ODQ(SAS),
∴OP=OQ,且∠DOQ=∠POC
又∵∠DOC=90°,
∴∠QOP=90°,
则OP⊥OQ.
(1)证明:∵正方形ABCD中,∠ADC=90°,即∠ADP+∠PDC=90°,
又∵DP⊥AQ,
∴∠DAQ+∠ADP=90°,
∴∠DAQ=∠PDC,
∵在△ADQ和△CDP中,
∠DAQ=∠PDC
AD=DC
∠ADQ=∠DCP
,
∴△ADQ≌△CDP(ASA),
∴DQ=CP;
(2)OP=OQ且OP⊥OQ.
证明:∵四边形ABCD是正方形,
∴∠ODQ=∠OCP,
∵在△OCP和△ODQ中,
OD=OP
∠ODQ=∠OCP
DQ=CP
∴△OCP≌△ODQ(SAS),
∴OP=OQ,且∠DOQ=∠POC
又∵∠DOC=90°,
∴∠QOP=90°,
则OP⊥OQ.
考点梳理
考点
分析
点评
正方形的性质;全等三角形的判定与性质.
(1)根据直角三角形的性质证得∠DAQ=∠PDC,然后根据ASA即可证得△ADQ≌△CDP,即可证得;
(2)首先证明△OCP≌△ODQ,即可得到OP=OQ,且∠DOQ=∠POC,然后根据正方形的对角线互相垂直即可证得∠QOP=90°,从而证出垂直.
本题考查了正方形的性质以及全等三角形的判定与性质,正确证明△OCP≌△ODQ是关键.
找相似题
(2013·资阳)如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )
(2013·台湾)附图为正三角形ABC与正方形DEFG的重叠情形,其中D、E两点分别在AB、BC上,且BD=BE.若AC=18,GF=6,则F点到AC的距离为何?( )
(2013·齐齐哈尔)在锐角三角形ABC中,AH是BC边上的高,分别以AB、AC为一边,向外作正方形ABDE和ACFG,连接CE、BG和EG,EG与HA的延长线交于点M,下列结论:①BG=CE ②BG⊥CE ③AM是△AEG的中线 ④∠EAM=∠ABC,其中正确结论的个数是( )
(2013·连云港)如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为( )
(2013·东营)如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下列结论:
(1)AE=BF;(2)AE⊥BF;(3)AO=OE;(4)S
△AOB
=S
四边形DEOF
中正确的有( )