答案

(1)证明:∵AM⊥MN于点M,CN⊥MN于点N(已知),
∴∠AMD=∠DNC=90°(垂直的定义).
∴∠MAD+∠MDA=180°-90°=90°(三角形内角和定理).
∵四边形ABCD是正方形(已知),
∴∠ADC=90°,AD=DC.
∴∠MDA+∠NDC=180°-90°=90°(平角的定义).
∴∠MAD+∠MDA=∠NDC+∠NCD.
∴∠MAD=∠NDC.
在△AMB和△DNC中,
∵∠AMD=∠DNC,∠MAD=∠NDC,AD=DC,
∴△AMD≌△DNC(AAS).
(2)证明:由(1)△AMD≌△DNC,
∴AM=DN,MD=NC.(全等三角形对应边相等)
∴MD+DN=AM+CN.
即MN=AM+CN.
(3)猜想BR=MN.
证明如下:
作AE⊥BR于E.
∵BR⊥MN,CN⊥MN(已知)
∴BR∥CN(垂直于同一直线的两条直线平行)
∴∠1=∠2(两直线平行同位角相等)
又四边形ABCD是正方形
∴AB⊥BC,DC⊥BC,
∴∠ABE=∠DCN=90°-∠1,
在△ABE和△DCN中,AB=DC,∠ABE=∠DCN,∠AEB=∠DNC=90°
∴△ABE≌△DCN(AAS)
由(1)△ADM≌△DCN
∴△ABE≌△ADM
∴AM=AE(全等三角形对应边相等).
又AE∥MR,AM∥ER,
∴BR=BE+ER=CN+AM=DM+DN=MN.

(1)证明:∵AM⊥MN于点M,CN⊥MN于点N(已知),
∴∠AMD=∠DNC=90°(垂直的定义).
∴∠MAD+∠MDA=180°-90°=90°(三角形内角和定理).
∵四边形ABCD是正方形(已知),
∴∠ADC=90°,AD=DC.
∴∠MDA+∠NDC=180°-90°=90°(平角的定义).
∴∠MAD+∠MDA=∠NDC+∠NCD.
∴∠MAD=∠NDC.
在△AMB和△DNC中,
∵∠AMD=∠DNC,∠MAD=∠NDC,AD=DC,
∴△AMD≌△DNC(AAS).
(2)证明:由(1)△AMD≌△DNC,
∴AM=DN,MD=NC.(全等三角形对应边相等)
∴MD+DN=AM+CN.
即MN=AM+CN.
(3)猜想BR=MN.
证明如下:
作AE⊥BR于E.
∵BR⊥MN,CN⊥MN(已知)
∴BR∥CN(垂直于同一直线的两条直线平行)
∴∠1=∠2(两直线平行同位角相等)
又四边形ABCD是正方形
∴AB⊥BC,DC⊥BC,
∴∠ABE=∠DCN=90°-∠1,
在△ABE和△DCN中,AB=DC,∠ABE=∠DCN,∠AEB=∠DNC=90°
∴△ABE≌△DCN(AAS)
由(1)△ADM≌△DCN
∴△ABE≌△ADM
∴AM=AE(全等三角形对应边相等).
又AE∥MR,AM∥ER,
∴BR=BE+ER=CN+AM=DM+DN=MN.