试题
题目:
已知:如图,在正方形ABCD中,E为BC中点,F为CD上一点,AE平分∠BAF.
求证:AF=CF+AB.
答案
证明:过中点E作EM∥AB,交AF于M.则AM=MF,且∠1=∠2=∠3.
∴EM=AM=
1
2
AF
∵EM=
1
2
(AB+CF),
∴AF=AB+CF.
证明:过中点E作EM∥AB,交AF于M.则AM=MF,且∠1=∠2=∠3.
∴EM=AM=
1
2
AF
∵EM=
1
2
(AB+CF),
∴AF=AB+CF.
考点梳理
考点
分析
点评
专题
角平分线的性质;正方形的性质.
过中点E作EM∥AB,交AF于M.通过中位线的性质证明EM=
1
2
(AB+CF),从而得出结论.
本题考查了正方形的性质及全等三角形的判定和性质.合理的将AF分成与BC,CF相等的两份是解题的关键,本题难度较大.
证明题.
找相似题
(2013·资阳)如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )
(2013·台湾)附图为正三角形ABC与正方形DEFG的重叠情形,其中D、E两点分别在AB、BC上,且BD=BE.若AC=18,GF=6,则F点到AC的距离为何?( )
(2013·齐齐哈尔)在锐角三角形ABC中,AH是BC边上的高,分别以AB、AC为一边,向外作正方形ABDE和ACFG,连接CE、BG和EG,EG与HA的延长线交于点M,下列结论:①BG=CE ②BG⊥CE ③AM是△AEG的中线 ④∠EAM=∠ABC,其中正确结论的个数是( )
(2013·连云港)如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为( )
(2013·东营)如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下列结论:
(1)AE=BF;(2)AE⊥BF;(3)AO=OE;(4)S
△AOB
=S
四边形DEOF
中正确的有( )