试题
题目:
如图所示,以正方形ABCD中AD边为一边向外作等边△ADE,则∠AEB=( )
A.10°
B.15°
C.20°
D.12.5°
答案
B
解:∵四边形ABCD是正方形,
∴AB=AD,∠BAD=90°,
∵三角形ADE是等边三角形,
∴∠EAD=60°,AD=AE=AB,
∴∠ABE=∠AEB,
∵∠ABE+∠AEB+∠BAE=180°,
∴∠AEB=
1
2
×(180°-90°-60°)=15°,
故选B.
考点梳理
考点
分析
点评
专题
正方形的性质;三角形内角和定理;等腰三角形的性质;等边三角形的性质.
根据正方形性质求出AB=AD,∠BAD=90°,根据等边三角形的性质得出∠EAD=60°,AD=AE=AB,推出∠ABE=∠AEB,根据三角形的内角和定理求出即可.
本题考查了等腰三角形的性质,三角形的内角和定理,正方形性质,等边三角形的性质的应用,关键是求出∠BAE的度数,通过做此题培养了学生的推理能力,题目综合性比较强,是一道比较好的题目.
证明题.
找相似题
(2013·资阳)如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )
(2013·台湾)附图为正三角形ABC与正方形DEFG的重叠情形,其中D、E两点分别在AB、BC上,且BD=BE.若AC=18,GF=6,则F点到AC的距离为何?( )
(2013·齐齐哈尔)在锐角三角形ABC中,AH是BC边上的高,分别以AB、AC为一边,向外作正方形ABDE和ACFG,连接CE、BG和EG,EG与HA的延长线交于点M,下列结论:①BG=CE ②BG⊥CE ③AM是△AEG的中线 ④∠EAM=∠ABC,其中正确结论的个数是( )
(2013·连云港)如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为( )
(2013·东营)如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下列结论:
(1)AE=BF;(2)AE⊥BF;(3)AO=OE;(4)S
△AOB
=S
四边形DEOF
中正确的有( )