试题

题目:
如图甲,在△ABC中,∠ACB为锐角.点D为射线BC上一动点,连接AD,以AD为一边且在AD的右侧作正方形ADEF.如果AB=AC,∠BAC=90°.
解答下列问题:
(1)当点D在线段BC上时(与点B不重合),如图甲,线段CF、BD之间的位置关系为
垂直
垂直
,数量关系为
相等
相等

(2)当点D在线段BC的延长线上时,如图乙,①中的结论是否仍然成立,为什么?(要求写出证明过程)
青果学院
答案
垂直

相等

解:(1)∵四边形ADEF是正方形,
∴∠DAF=90°,AD=AF,
∵AB=AC,∠BAC=90°,
∴∠BAD+∠DAC=∠CAF+∠DAC=90°,
∴∠BAD=∠CAF,
在△BAD和△CAF中,
AB=AC
∠BAD=∠CAF
AD=AF

∴△BAD≌△CAF(SAS),
∴CF=BD,
∴∠B=∠ACF,
∴∠B+∠BCA=90°,
∴∠BCA+∠ACF=90°,
即CF⊥BD;
故答案为:垂直,相等;

青果学院(2)当点D在BC的延长线上时①的结论仍成立.
理由:∵四边形ADEF是正方形,
∴∠DAF=90°,AD=AF,
∵AB=AC,∠BAC=90°,
∴∠BAD-∠DAC=∠CAF-∠DAC=90°,
∴∠BAD=∠CAF,
在△BAD和△CAF中,
AB=AC
∠BAD=∠CAF
AD=AF

∴△BAD≌△CAF(SAS),
∴CF=BD,
∴∠B=∠ACF,
∴∠B+∠BCA=90°,
∴∠BCA+∠ACF=90°,
即CF⊥BD.
考点梳理
正方形的性质;全等三角形的判定与性质.
(1)由四边形ADEF是正方形与AB=AC,∠BAC=90°,易证得△BAD≌△CAF,然后由全等三角形的性质,可证得CF=BD,继而求得∠BCA+∠ACF=90°,即CF⊥BD;
(2)由四边形ADEF是正方形与AB=AC,∠BAC=90°,易证得△BAD≌△CAF,然后由全等三角形的性质,可证得CF=BD,继而求得∠BCA+∠ACF=90°,即CF⊥BD.
此题考查了正方形的性质、全等三角形的判定与性质以及直角三角形的性质.此题难度适中,注意掌握数形结合思想的应用.
找相似题