试题

题目:
青果学院如图所示,四边形ABCD是正方形,点E是边BC的中点且∠AEF=90°,EF交正方形外角平分线CF于点F,取边AB的中点G,连接EG.
求证:EG=CF.
答案
证明:∵正方形ABCD,点G,E为边AB、BC中点,
∴AG=EC,△BEG为等腰直角三角形,
∴∠AGE=180°-45°=135°,青果学院
又∵CF为正方形外角平分线,
∴∠ECF=90°+45°=135°,
∵∠AEF=90°,
∴∠GAE=90°-∠AEB=∠CEF,
在△AGE和△ECF中,
∠AGE=∠ECF
AG=CE
∠GAE=∠CEF

∴△AGE≌△ECF,
∴EG=CF.
证明:∵正方形ABCD,点G,E为边AB、BC中点,
∴AG=EC,△BEG为等腰直角三角形,
∴∠AGE=180°-45°=135°,青果学院
又∵CF为正方形外角平分线,
∴∠ECF=90°+45°=135°,
∵∠AEF=90°,
∴∠GAE=90°-∠AEB=∠CEF,
在△AGE和△ECF中,
∠AGE=∠ECF
AG=CE
∠GAE=∠CEF

∴△AGE≌△ECF,
∴EG=CF.
考点梳理
正方形的性质;全等三角形的判定与性质.
G、E分别为AB、BC的中点,由正方形的性质可知AG=EC,△BEG为等腰直角三角形,则∠AGE=180°-45°=135°,而∠ECF=90°+45°=135°,得∠AGE=∠ECF,再利用互余关系,得∠GAE=90°-∠AEB=∠CEF,可证△AGE≌△ECF,得出结论.
本题考查了旋转的性质,正方形的性质,全等三角形的判定与性质.关键是根据正方形的性质寻找判定三角形全等的条件.
证明题.
找相似题