试题
题目:
如图,E、F分别是正方形ABCD的边AD、DC上的点,BE⊥AF,若图中阴影部分的面积为8,则正方形的面积是( )
A.12
B.16
C.20
D.24
答案
B
解:∵BE⊥AF,
∴∠ABE+∠BAF=90°,
又∵∠DAF+∠BAF=∠BAD=90°,
∴∠ABE=∠DAF,
在△ABE和△DAF中,
∵
∠ABE=∠DAF
AB=AD
∠BAE=∠D
,
∴△ABE≌△DAF(ASA),
∴S
△ABE
+S
△BCF
=S
△ADF
+S
△BCF
=
1
2
S
正方形ABCD
,
∴阴影部分的面积=S
正方形ABCD
-
1
2
S
正方形ABCD
=
1
2
S
正方形ABCD
,
∵阴影部分的面积为8,
∴正方形ABCD的面积=2×8=16.
故选B.
考点梳理
考点
分析
点评
正方形的性质;全等三角形的判定与性质.
根据同角的余角相等求出∠ABE=∠DAF,然后利用“角边角”证明△ABE和△DAF全等,然后求出△ABE和△BCF的面积之和等于正方形面积的一半,从而得到阴影部分的面积等于正方形面积的一半,然后求解即可.
本题考查了正方形的性质,全等三角形的判定,求出三角形全等,然后得到空白三角形的面积的和等于正方形的面积的一半是解题的关键.
找相似题
(2013·资阳)如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )
(2013·台湾)附图为正三角形ABC与正方形DEFG的重叠情形,其中D、E两点分别在AB、BC上,且BD=BE.若AC=18,GF=6,则F点到AC的距离为何?( )
(2013·齐齐哈尔)在锐角三角形ABC中,AH是BC边上的高,分别以AB、AC为一边,向外作正方形ABDE和ACFG,连接CE、BG和EG,EG与HA的延长线交于点M,下列结论:①BG=CE ②BG⊥CE ③AM是△AEG的中线 ④∠EAM=∠ABC,其中正确结论的个数是( )
(2013·连云港)如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为( )
(2013·东营)如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下列结论:
(1)AE=BF;(2)AE⊥BF;(3)AO=OE;(4)S
△AOB
=S
四边形DEOF
中正确的有( )