答案

解:△ABC和△AEG的面积相等,
理由是:过C作CH⊥AB于H,过G作GO⊥EA交EA延长线于O,
则∠O=∠CHA=90°,
∴∠EAG+∠GAO=180°,
∵四边形ABDE和四边形ACFG是正方形,
∴AE=AB,AC=AG,∠EAB=∠GAC=90°,
∴∠EAG+∠HAC=360°-90°-90°=180°,
∴∠GAO=∠CAH,
在△AGO和△ACH中
∴△AGO≌△ACH,
∴GO=CH,
∵AE=AB,S
△ABC=
AB×CH,S
△ACH=
AE×GO,
∴△ABC和△AEG的面积相等.

解:△ABC和△AEG的面积相等,
理由是:过C作CH⊥AB于H,过G作GO⊥EA交EA延长线于O,
则∠O=∠CHA=90°,
∴∠EAG+∠GAO=180°,
∵四边形ABDE和四边形ACFG是正方形,
∴AE=AB,AC=AG,∠EAB=∠GAC=90°,
∴∠EAG+∠HAC=360°-90°-90°=180°,
∴∠GAO=∠CAH,
在△AGO和△ACH中
∴△AGO≌△ACH,
∴GO=CH,
∵AE=AB,S
△ABC=
AB×CH,S
△ACH=
AE×GO,
∴△ABC和△AEG的面积相等.