答案
证明:连接AC交MN于P,过M作MF∥AC交AB于F.则△ABC和△FBM均为等腰直角三角形,BF=BM;
又∵BA=BC,
∴AF=MC,
∵∠AMN=∠CAN=90°,∠APM=∠NPC,

∴∠1=∠2.
又MF∥AC,
∴∠2=∠3,
∴∠1=∠3;
又∵∠AFM=∠MCN=135°.
在△AFM和△MCN中,
,
∴△AFM≌△MCN(AAS),
∴AM=MN.
证明:连接AC交MN于P,过M作MF∥AC交AB于F.则△ABC和△FBM均为等腰直角三角形,BF=BM;
又∵BA=BC,
∴AF=MC,
∵∠AMN=∠CAN=90°,∠APM=∠NPC,

∴∠1=∠2.
又MF∥AC,
∴∠2=∠3,
∴∠1=∠3;
又∵∠AFM=∠MCN=135°.
在△AFM和△MCN中,
,
∴△AFM≌△MCN(AAS),
∴AM=MN.