试题
题目:
如图所示,正方形ABCD对角线交于O,点O是正方形A′B′C′O的一个顶点,两个正方形的边长都是2,那么正方形A′B′C′O绕O无论怎样转动时,图中两个正方形重叠部分的面积为
1
1
.
答案
1
解:∵ABCD和A′B′C′O都是边长为2的正方形
∴OA=OB,∠AOB=∠A′OC′=90°,∠BAO=∠OBC=45°
∴∠AOB-∠BOE=∠A′OC′-∠BOE,即∠AOE=∠BOF
∴△AOE≌△BOF
∴重叠部分面积为:S
△BOE
+S
△BOF
=S
△BOE
+S
△AOE
=S
△AOB
=
1
4
S
正方形ABCD
=
1
4
×2
2
=1,
故答案为:1.
考点梳理
考点
分析
点评
专题
正方形的性质;全等三角形的判定与性质.
求两个正方形重叠部分的面积,首先应证明:△AOE≌△BOF,从而将求重叠部分的面积转化为△AOB的面积.
通过将重叠部分的面积进行转化,再利用正方形的一些特殊性质,可使求解变的简单.
计算题.
找相似题
(2013·资阳)如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )
(2013·台湾)附图为正三角形ABC与正方形DEFG的重叠情形,其中D、E两点分别在AB、BC上,且BD=BE.若AC=18,GF=6,则F点到AC的距离为何?( )
(2013·齐齐哈尔)在锐角三角形ABC中,AH是BC边上的高,分别以AB、AC为一边,向外作正方形ABDE和ACFG,连接CE、BG和EG,EG与HA的延长线交于点M,下列结论:①BG=CE ②BG⊥CE ③AM是△AEG的中线 ④∠EAM=∠ABC,其中正确结论的个数是( )
(2013·连云港)如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为( )
(2013·东营)如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下列结论:
(1)AE=BF;(2)AE⊥BF;(3)AO=OE;(4)S
△AOB
=S
四边形DEOF
中正确的有( )