答案

答:PQ=PB
证明:过点P作MN∥BC,分别交AB于点M,交CD于点N,则四边形AMND和四边形BCNM都是矩形,
△AMP和△CNP都是等腰三角形.
∴NP=NC=MB
∵∠BPQ=90°
∴∠QPN+∠BPM=90°,而∠BPM+∠PBM=90°
∴∠QPN=∠PBM.又∠QNP=∠PMB=90°
∵在△QNP和△PMB中,
,
∴△QNP≌△PMB(ASA),
∴PQ=PB.

答:PQ=PB
证明:过点P作MN∥BC,分别交AB于点M,交CD于点N,则四边形AMND和四边形BCNM都是矩形,
△AMP和△CNP都是等腰三角形.
∴NP=NC=MB
∵∠BPQ=90°
∴∠QPN+∠BPM=90°,而∠BPM+∠PBM=90°
∴∠QPN=∠PBM.又∠QNP=∠PMB=90°
∵在△QNP和△PMB中,
,
∴△QNP≌△PMB(ASA),
∴PQ=PB.