试题
题目:
如图,在正方形ABCD中,P是CD上一点,且AP=BC+CP,Q为CD中点,求证:∠BAP=2∠QAD.
答案
解:作∠BAP的平分线交BC于M,作MN⊥AP,垂足为N,连接MP
∵AF是∠BAP的平分线,MN⊥AP,
∴∠BAM=∠MAP,
∠B=∠ANM=90°,AM=AM,
∴△ABM≌△ANM(AAS),
∴MB=MN,AB=AN,
∵AP=PC+CB=PC+AB,
又AP=AN+NP=AB+NP
∴NP=PC,
∵PM=PM,
∴Rt△PMN≌Rt△PMC(HL),
∴MN=MC,
∴MB=MC,
∴△ABM≌△ADQ(SAS),
∴∠QAD=∠BAM,
∴∠BAP=2∠QAD
解:作∠BAP的平分线交BC于M,作MN⊥AP,垂足为N,连接MP
∵AF是∠BAP的平分线,MN⊥AP,
∴∠BAM=∠MAP,
∠B=∠ANM=90°,AM=AM,
∴△ABM≌△ANM(AAS),
∴MB=MN,AB=AN,
∵AP=PC+CB=PC+AB,
又AP=AN+NP=AB+NP
∴NP=PC,
∵PM=PM,
∴Rt△PMN≌Rt△PMC(HL),
∴MN=MC,
∴MB=MC,
∴△ABM≌△ADQ(SAS),
∴∠QAD=∠BAM,
∴∠BAP=2∠QAD
考点梳理
考点
分析
点评
专题
正方形的性质;全等三角形的判定与性质.
作∠BAC的平分线交BC于M,交DC的延长线于F,进而求证△ABM≌△ANM,进而可得△ABN≌△ADQ,Rt△PMN≌Rt△PMC,△ABM≌△ADQ进而可得出结论.
本题考查了正方形各边长相等的性质,全等三角形的判定,全等三角形对应边、对应角相等的性质,本题中求证△ABM≌△ADQ是解题的关键.
证明题.
找相似题
(2013·资阳)如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )
(2013·台湾)附图为正三角形ABC与正方形DEFG的重叠情形,其中D、E两点分别在AB、BC上,且BD=BE.若AC=18,GF=6,则F点到AC的距离为何?( )
(2013·齐齐哈尔)在锐角三角形ABC中,AH是BC边上的高,分别以AB、AC为一边,向外作正方形ABDE和ACFG,连接CE、BG和EG,EG与HA的延长线交于点M,下列结论:①BG=CE ②BG⊥CE ③AM是△AEG的中线 ④∠EAM=∠ABC,其中正确结论的个数是( )
(2013·连云港)如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为( )
(2013·东营)如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下列结论:
(1)AE=BF;(2)AE⊥BF;(3)AO=OE;(4)S
△AOB
=S
四边形DEOF
中正确的有( )