试题
题目:
如图,以Rt△ABC的斜边BC为一边在△ABC的同侧作正方形BCEF,设正方形的中心为O,连接AO,如果AB=4,AO=6
2
,那么AC的长等于( )
A.12
B.16
C.4
3
D.8
2
答案
B
解:在AC上取一点G使CG=AB=4,连接OG
∵∠ABO=90°-∠AHB,∠OCG=90°-∠OHC,∠OHC=∠AHB
∴∠ABO=∠OCG
∵OB=OC,CG=AB
∴△OGC≌△OAB
∴OG=OA=6
2
,∠BOA=∠GOC
∵∠GOC+∠GOH=90°
∴∠GOH+∠BOA=90°
即:∠AOG=90°
∴△AOG是等腰直角三角形,AG=12(勾股定理)
∴AC=16.
故选B.
考点梳理
考点
分析
点评
专题
正方形的性质;全等三角形的判定与性质;等腰直角三角形.
在AC上取一点G,使CG=AB=4,连接OG,可证得△OGC≌△OAB,从而得到OG=OA=6
2
,再可证△AOG是等腰直角三角形,根据求出AG,也就求得AC=6.
本题的关键是通过作辅助线来构建全等三角形,然后将已知和所求线段转化到直角三角形中进行计算.
压轴题.
找相似题
(2013·资阳)如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )
(2013·台湾)附图为正三角形ABC与正方形DEFG的重叠情形,其中D、E两点分别在AB、BC上,且BD=BE.若AC=18,GF=6,则F点到AC的距离为何?( )
(2013·齐齐哈尔)在锐角三角形ABC中,AH是BC边上的高,分别以AB、AC为一边,向外作正方形ABDE和ACFG,连接CE、BG和EG,EG与HA的延长线交于点M,下列结论:①BG=CE ②BG⊥CE ③AM是△AEG的中线 ④∠EAM=∠ABC,其中正确结论的个数是( )
(2013·连云港)如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为( )
(2013·东营)如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下列结论:
(1)AE=BF;(2)AE⊥BF;(3)AO=OE;(4)S
△AOB
=S
四边形DEOF
中正确的有( )