试题

题目:
青果学院如图,直线l过正方形ABCD的顶点D,点A、C到直线l的距离分别是1和2,则正方形ABCD的面积为(  )



答案
D
解:∵四边形ABCD是正方形,
∴AD=CD,∠ADC=90°,
∵AE⊥EF,CF⊥EF,
∴∠AED=∠DFC=90°,
∴∠ADE+∠CDF=180°-90°=90°,∠ADE+∠EAD=90°,
∴∠EAD=∠CDF,
∵在△AED和△DFC中
∠AED=∠DFC
∠EAD=∠CDF
AD=CD

∴△AED≌△DFC(AAS),
∴DE=CF=2,
在Rt△AED中,由勾股定理得:AD=
12+22
=
5

即正方形ABCD的面积是(
5
)
2
=5.
故选D.
考点梳理
正方形的性质;全等三角形的判定与性质;勾股定理.
根据正方形性质得出AD=CD,∠ADC=90°,求出∠EAD=∠FDC,证△AED≌△DFC,求出DE=CF=2,在Rt△AED中,由勾股定理求出AD,即可求出正方形的面积.
本题考查了正方形性质,全等三角形的性质和判定,勾股定理的应用,关键是求出DE=CF,主要考查学生分析问题和解决问题的能力,题型较好,难度适中.
计算题.
找相似题