试题

题目:
青果学院如图,在正方形ABCD中,以对角线BD为边作菱形BDFE,连接BF,则∠AFB=(  )



答案
C
解:在正方形ABCD中,∠ADB=
1
2
∠ADC=
1
2
×90°=45°,
在菱形BDFE中,BD=DF,
所以,∠DBF=∠AFB,
在△BDF中,∠ADB=∠DBF+∠AFB=2∠AFB=45°,
解得∠AFB=22.5°.
故选C.
考点梳理
正方形的性质;菱形的性质.
根据正方形的对角线平分一组对角可得∠ADB=45°,再根据菱形的四条边都相等可得BD=DF,根据等边对等角可得∠DBF=∠DFB,然后根据三角形的一个外角等于与它不相邻的两个内角的和进行计算即可得解.
本题考查了正方形的四个角都是直角,对角线平分一组对角的性质,菱形的四条边都相等的性质,以及等边对等角,三角形的一个外角等于与它不相邻的两个内角的和的性质,难度不大,熟记各性质是解题的关键.
找相似题