试题
题目:
(2012·和平区二模)正方形ABCD在平面直角坐标系中的位置如图所示,已知A点坐标为(0,4),B点坐标为(-3,0),则C点的坐标为( )
A.(1,3)
B.(1,-3)
C.(1,-4)
D.(2,-4)
答案
B
解:过C点作CE⊥x轴于E.
∵四边形ABCD为正方形,
∴AB=BC,∠ABC=90°,
∴∠ABO+∠CBE=90°,又∠ABO+∠BAO=90°,
∴∠BAO=∠CBE,
在△ABO和△BCE中
∵
∠AOB=∠CEB
∠BAO=∠CBE
AB=BC
∴△ABO≌△BCE(AAS),
∴CE=OB=3,BE=OA=4,
∴C点坐标为(4-3,-3),即(1,-3).
故选:B.
考点梳理
考点
分析
点评
正方形的性质;坐标与图形性质.
根据正方形的性质,过C点作CE⊥x轴于E,可证△ABO≌△BCE,求出CE,BE的长,从而求解.
此题主要考查了正方形的性质,先证△ABO≌△BCE,把已知坐标转化为相关线段的长,再求与点C的坐标有关的长度,从而确定C点坐标.
找相似题
(2013·资阳)如图,点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是( )
(2013·台湾)附图为正三角形ABC与正方形DEFG的重叠情形,其中D、E两点分别在AB、BC上,且BD=BE.若AC=18,GF=6,则F点到AC的距离为何?( )
(2013·齐齐哈尔)在锐角三角形ABC中,AH是BC边上的高,分别以AB、AC为一边,向外作正方形ABDE和ACFG,连接CE、BG和EG,EG与HA的延长线交于点M,下列结论:①BG=CE ②BG⊥CE ③AM是△AEG的中线 ④∠EAM=∠ABC,其中正确结论的个数是( )
(2013·连云港)如图,正方形ABCD的边长为4,点E在对角线BD上,且∠BAE=22.5°,EF⊥AB,垂足为F,则EF的长为( )
(2013·东营)如图,E、F分别是正方形ABCD的边CD、AD上的点,且CE=DF,AE、BF相交于点O,下列结论:
(1)AE=BF;(2)AE⊥BF;(3)AO=OE;(4)S
△AOB
=S
四边形DEOF
中正确的有( )