试题

题目:
青果学院(2013·龙岗区模拟)如图,在△ABC中,AB=AC,∠BAC=90°,点D为线段BC上一点,连接AD,以AD为一边且在AD的右侧作正方形ADEF,CF交DE于点P.若AC=4
2
,CD=2,则线段CP的长(  )



答案
A
解:过A作AM⊥BD于M,
青果学院
∵∠BAC=90°,AB=AC=4
2

∴∠B=∥ACB=45°,由勾股定理得:BC=8,
∵CD=2,
∴BD=8-2=6,
∵∠BAC=90°,AB=AC,AM⊥BC,
∴∠B=∠BAM=45°,
∴BM=AM,
∵AB=4
2

∴由勾股定理得:BM=AM=4,
∴DM=6-4=2,
在Rt△AMD中,由勾股定理得:AD=
42+22
=2
5

∵四边形ADEF是正方形,
∴EF=DE=AF=AD=2
5
,∠E=90°,
∵ADEF是正方形,
∴AD=AF,∠DAF=90°.
∵∠BAC=90°,
∴∠BAD=∠CAF=90°-∠DAC.
设CP=x,
∵在△ABD和△ACF中
AB=AC
∠BAD=∠FAC
AD=AF

∴△ABD≌△ACF(SAS),
∴CF=BD=6,∠B=∠ACB=∠ACF=45°,
∴∠PCD=90°=∠E,
∵∠FPE=∠DPC,
∴△FPE∽△DPC,
FP
DP
=
PE
CP

6-x
x2+22
=
2
5
2

x2+3x-4=0,
x=-4(舍去),x=1,
即CP=1,
故选A.
考点梳理
正方形的性质;全等三角形的判定与性质;等腰直角三角形.
根据ADEF是正方形推出AD=AF,∠DAF=90°,证△ABD≌△ACF,推出CF=BD,求出AD,证△FEP∽△DCP,得出比例式,代入求出即可.
本题考查了正方形性质,全等三角形的性质和判定,相似三角形的性质和判定的应用,关键是能得出关于x的方程,题目比较好,但是有一定的难度.
找相似题