数学
(2009·贺州)如图,∠MON=25°,矩形ABCD的对角线AC⊥ON,边BC在OM上,当AC=3时,AD长是多少?(结果精确到0.01)
(2009·上海)已知∠ABC=90°,AB=2,BC=3,AD∥BC,P为线段BD上的动点,点Q在射线AB上,且满足
PQ
PC
=
AD
AB
(如图1所示).
(1)当AD=2,且点Q与点B重合时(如图2所示),求线段PC的长;
(2)在图1中,连接AP.当AD=
3
2
,且点Q在线段AB上时,设点B、Q之间的距离为x,
S
△APQ
S
△PBC
=y
,其中S
△APQ
表示△APQ的面积,S
△PBC
表示△PBC的面积,求y关于x的函数解析式,并写出函数定义域;
(3)当AD<AB,且点Q在线段AB的延长线上时(如图3所示),求∠QPC的大小.
(2010·鞍山)如图,在直角梯形ABCD中,AD∥BC,∠C=90°,BC=16,DC=12,AD=21.动点P从点D出发,沿射线DA的方向,在射线DA上以每秒2两个单位长的速度运动,动点Q从点C出发,在线段CB上以每秒1个单位长的速度向点B运动,点P,Q分别从点D,C同时
出发,当点Q运动到点B时,点P随之停止运动.设运动的时间为t(秒).
(1)设△BPQ的面积为S,求S与t之间的函数关系式;
(2)当t为何值时,以B,P,Q三点为顶点的三角形是等腰三角形;
(3)当线段PQ与线段AB相交于点O,且2AO=OB时,求∠BQP的正切值;
(4)是否存在时刻t,使得PQ⊥BD?若存在,求出t的值;若不存在,请说明理由.
(2010·鞍山)A,B,C为登山缆车的三个支撑点,AB,BC为连接三个支撑点的钢缆.已知A,B,C的海拔分别为204m,400m,1000m.如图建立直角坐标系,设A(a,204),B(b,400),C(c,1000),直线AB的解析式
为
y=
1
2
x+4
,直线BC与水平线的夹角为45°.
(1)求a,b,c的值;
(2)求支撑点B,C之间的距离?
(2010·泉州)如图,在梯形ABCD中,∠A=∠B=90°,AB=
5
2
,点E在AB上,∠AED=45°,DE=6,CE=7.求:AE的长及sin∠BCE的值.
(2010·苏州)如图,在△ABC中,∠C=90°,AC=8,BC=6.P是AB边上的一个动点(异于A、B两点),
过点P分别作AC、BC边的垂线,垂足为M、N.设AP=x.
(1)在△ABC中,AB=
10
10
;
(2)当x=
5
5
时,矩形PMCN的周长是14;
(3)是否存在x的值,使得△PAM的面积、△PBN的面积与矩形PMCN的面积同时相等?请说出你的判断,并加以说明.
(2010·盐城)如图,在梯形ABCD中,AD∥BC,AB=CD=AD,BD⊥CD.
(1)求sin∠DBC的值;
(2)若BC长度为4cm,求梯形ABCD的面积.
(2010·宜宾)已知,在△ABC中,∠A=45°,AC=
2
,AB=
3
+1,则边BC的长为
2
2
.
(2010·益阳)我们把对称中心重合,四边分别平行的两个正方形之间的部分叫“方形环”,易知方形环四周的宽度相等.一条直线l与方形环的边线有四个交点M、M′、N′、N、小明在探究线段MM′与N′N的数量关系时,从点M′、N′向对边作垂线段M′E、N′F,利用三角形全等、相似及锐角三角函数等相关知识解决了问题、请你参考小明的思路解答下列问题:
(1)当直线l与方形环的对边相交时(如图1),直线l分别交AD、A′D'、B′C′、BC于M、M′、N′、N,小明发现MM′与N′N相等,请你帮他说明理由;
(2)当直线l与方形环的邻边相交时(如图2),l分别交AD、A′D′、D′C′、DC于M、M′、N′、N,l与DC的夹角为α,你认为MM′与N′N还相等吗?若相等,说明理由;若不相等,求出
MM′
N′N
的值(用含α的三角函数表示).
(2010·枣庄)如图,在矩形ABCD中,E是BC边上的点,AE=BC,DF⊥AE,垂足为F,连接DE.
(1)求证:△ABE≌△DFA;
(2)如果AD=10,AB=6,求sin∠EDF的值.
第一页
上一页
148
149
150
151
152
下一页
最后一页
976504
976505
976506
976507
976508
976509
976510
976511
976512
976513