试题
题目:
(2010·枣庄)如图,在矩形ABCD中,E是BC边上的点,AE=BC,DF⊥AE,垂足为F,连接DE.
(1)求证:△ABE≌△DFA;
(2)如果AD=10,AB=6,求sin∠EDF的值.
答案
(1)证明:在矩形ABCD中,BC=AD,AD∥BC,∠B=90°,
∴∠DAF=∠AEB.
∵DF⊥AE,AE=BC,
∴∠AFD=90°,AE=AD.
∴△ABE≌△DFA.
(2)解:由(1)知△ABE≌△DFA.
∴AB=DF=6.
在直角△ADF中,AF=
A
D
2
-D
F
2
=
10
2
-
6
2
=8
,
∴EF=AE-AF=AD-AF=2.
在直角△DFE中,DE=
D
F
2
+E
F
2
=
6
2
+
2
2
=2
10
,
∴sin∠EDF=
EF
DE
=
2
2
10
=
10
10
.
(1)证明:在矩形ABCD中,BC=AD,AD∥BC,∠B=90°,
∴∠DAF=∠AEB.
∵DF⊥AE,AE=BC,
∴∠AFD=90°,AE=AD.
∴△ABE≌△DFA.
(2)解:由(1)知△ABE≌△DFA.
∴AB=DF=6.
在直角△ADF中,AF=
A
D
2
-D
F
2
=
10
2
-
6
2
=8
,
∴EF=AE-AF=AD-AF=2.
在直角△DFE中,DE=
D
F
2
+E
F
2
=
6
2
+
2
2
=2
10
,
∴sin∠EDF=
EF
DE
=
2
2
10
=
10
10
.
考点梳理
考点
分析
点评
专题
矩形的性质;直角三角形全等的判定;勾股定理;解直角三角形.
(1)根据矩形的对边平行且相等得到AD=BC=AE,∠DAF=∠EAB.再结合一对直角相等即可证明三角形全等;
(2)根据全等三角形的对应边相等以及勾股定理,可以求得DF,EF的长;再根据勾股定理求得DE的长,运用三角函数定义求解.
熟练运用矩形的性质和判定,能够找到证明全等三角形的有关条件;
运用全等三角形的性质和勾股定理求得三角形中的边,再根据锐角三角函数的概念求解.
综合题.
找相似题
(2013·绵阳)如图,四边形ABCD是菱形,对角线AC=8cm,BD=6cm,DH⊥AB于点H,且DH与AC交于G,则GH=( )
(2002·甘肃)如图,在Rt△ABC中,∠C=90°,AC=8,∠A的平分线AD=
16
3
3
,求∠B的度数及边BC、AB的长.
(2002·金华)如图,在△ABC中,AC=15,BC=18,sinC=
4
5
,D是AC上一个动点(不运动至点A,C),过D作DE∥
BC,交AB于E,过D作DF⊥BC,垂足为F,连接BD,设CD=x.
(1)用含x的代数式分别表示DF和BF;
(2)如果梯形EBFD的面积为S,求S关于x的函数关系式;
(3)如果△BDF的面积为S
1
,△BDE的面积为S
2
,那么x为何值时,S
1
=2S
2
.
(2002·上海)如图,已知四边形ABCD中,BC=CD=DB,∠ADB=90°,cos∠ABD=
4
5
.
求S
△ABD
:S
△BCD
.
(2002·无锡)已知:如图,四边形ABCD中,AD⊥AB,BC⊥AB,BC=2AD,DE⊥CD交边AB于E,连接CE.
(1)求证:DE
2
=AE·CE;
(2)若△CDE与四边形ABCD的面积之比为2:5,求sin∠BCE的值.