数学
重庆市的重大惠民工程--公租房建设已陆续竣工,计划10年内解决低收入人群的住房问题,前6年,每年竣工投入使用的公租房面积y(单位:百万平方米),与时间x的关系是
y=-
1
6
x+5
,(x单位:年,1≤x≤6且x为整数);后4年,每年竣工投入使用的公租房面积y(单位:百万平方米),与时间x的关系是
y=-
1
8
x+
19
4
(x单位:年,7≤x≤10且x为整数).假设每年的公租房全部出租完.另外,随着物价上涨等因素的影响,每年的租金也随之上调,预计,第x年投入使用的公租房的租金z(单位:元/m
2
)与时间x(单位:年,1≤x≤10且x为整数)满足一次函数关系如下表:
z(元/m
2
)
50
52
54
56
58
…
x(年)
1
2
3
4
5
…
(1)求出z与x的函数关系式;
(2)求政府在第几年投入的公租房收取的租金最多,最多为多少百万元;
(3)若第6年竣工投入使用的公租房可解决20万人的住房问题,政府计划在第10年投入的公租房总面积不变的情况下,要让人均住房面积比第6年人均住房面积提高a%,这样可解决住房的人数将比第6年减少1.35a%,求a的值.
(参考数据:
315
≈17.7
,
319
≈17.8
,
321
≈17.9
)
某公司生产一种新型节能电水壶并加以销售,现准备在甲城市和乙城市两个不同地方按不同销售方案进行销售,以便开拓市场.
若只在甲城市销售,销售价格为y(元/件)、月销量为x(件),y是x的一次函数
月销量x(件)
1500
2000
销售价格y(元/件)
185
180
成本为50元/件,无论销售多少,每月还需支出广告费72500元,设月利润为W
甲
(元)(利润=销售额-成本-广告费).
若只在乙城市销售,销售价格为200 元/件,受各种不确定因素影响,成本为a元/件(a为常数,40≤a≤70),当月销量为x(件)时,每月还需缴纳
1
100
x
2
元的附加费,设月利润为W
乙
(元)(利润=销售额-成本-附加费).
(1)当x=1000 时,y=
190
190
元/件,w
甲
=
67500
67500
元;
(2)分别求出W
甲
,W
乙
与x间的函数关系式(不必写x的取值范围);
(3)当x为何值时,在甲城市销售的月利润最大?若在乙城市销售月利润的最大值与在甲城市销售月利润的最大值相同,求a 的值;
(4)如果某月要将5000件产品全部销售完,请你通过分析帮公司决策,选择在甲城市还是在乙城市销售才能使所获月利润较大?
如图,在平面直角坐标系中,原点O处有一乒乓球发射器向空中发射乒乓球,乒乓球飞行路线是一条抛物线,在地面上落点落在X轴上为点B.有人在线段OB上点C(靠点B一侧)竖直向上摆放无盖的圆柱形桶,试图让乒乓球落入桶内.已知OB=4米,OC=3米,乒乓球飞行最大高度MN=5米,圆柱形桶的直径为0.5,高为0.3米(乒乓球的体积和圆柱形桶的厚度忽略不计).
(1)求乒乓球飞行路线抛物线的解析式;
(2)如果竖直摆放5个圆柱形桶时,乒乓球能不能落入桶内?
(3)当竖直摆放圆柱形桶
8,9,10,11或12
8,9,10,11或12
个时,乒乓球可以落入桶内?(直接写出满足条件的一个答案)
(2011·新华区一模)某企业决定慎重投资,经企业信息部进行市场调研,调研结果如下:
信息一、如果单独投资A中产品,则所获利润y
A
(万元)与投资金额x(万元)之间存在正比例函数关系:y
A
=kx,并且当投资2.5万元时,可获利润1万元.
信息二:如果单独投资B种产品,则所获利润y
B
(万元)与投资金额x(万元)之间存在二次函数关系:y
B
=ax
2
+bx,并且当投资1万元时,可获利润1.4万元;当投资4万元时,可获利润3.2万元.
(1)请分别求出上述的正比例函数表达式和二次函数表达式;
(2)如果企业对A、B两种产品投资金额相同,且获得总利润为5万元,问:此时对两种产品的投资金额各是多少万元?
(3)如果企业同时对A、B两种产品共投资10万元,能否获得6万元的利润?
(2011·闸北区一模)小强在一次投篮训练中,从距地面高1.55米处的O点投出一球向篮圈中心A点投去,球的飞行路线为抛物线,当球达到离地面最大高度3.55米时,球移动的水平距离
为2米.现以O点为坐标原点,建立直角坐标系(如图所示),测得OA与水平方向OC的夹角为30°,A、C两点相距1.5米.
(1)求点A的坐标;
(2)求篮球飞行路线所在抛物线的解析式;
(3)判断小强这一投能否把球从O点直接投入篮圈A点(排除篮板球),如果能,请说明理由;如果不能,那么前后移动多少米,就能使刚才那一投直接命中篮圈A点了.(结果可保留根号)
(2011·珠海二模)如图,东梅中学要在教学楼后面的空地上用30米长的竹篱笆围出一个矩形地块作
生物园,矩形的一边用教学楼的外墙,其余三边用竹篱笆.设矩形的一边为x,面积为y.
(1)求y与x的函数关系式,并求自变量x的取值范围;
(2)生物园的面积能否达到120平方米?说明理由.
(2012·常州模拟)报刊零售点从报社以每份0.30元买进一种晚报,零售点卖出的价格为0.50元,约定卖不掉的报纸可以退还给报社,退还的钱数y(元)与退还的报纸数量k(份)之间的函数关系式如下:当0≤k<30时,y=-
1
100
k
2
+
3
10
k
;当k≥30时,y=0.02k,现经市场调查发现,在一个月中(按30天记数)有20天可卖出150份/天,有10天只能卖出100份/天,而报社规定每天批发给摊点的报纸的数量必须相同.
(1)若该家报刊摊点每天从报社买进的报纸数x份(满足100<x≤150),月毛利润为W元,求W关于x的函数关系式;
(2)当买进多少报纸时,月毛利润最大?为多少?(注:月毛利润=月总销售额-月总成本)
(2012·鼓楼区一模)QQ空间等级是用户资料和身份的象征,随着用户空间积分的增多,用户也将得到相应的空间等级.用户在10级以上,积分f与对应等级n的计算公式为:f=a(n-b)
2
(其中n为整数,且n>10,0<b<10),等级、积分的部分对应值如下表:
等级n
用户积分f
11
160
12
250
13
360
14
490
(1)根据上述信息,求a、b的值;
(2)小莉的妈妈现有积分6500分,求她的等级.
(2012·海沧区质检)我省某工艺厂为全运会设计了一款工艺品的成本是20元∕件.投放市场进行试销后发现每天的销售量y(件)是售价x(元∕件)的一次函数,当售价为22元∕件时,每天销售量为380件;当售价为25元∕件时,每天的销售量为350件.
(1)求y与x的函数关系式;
(2)该工艺品售价定为每件多少元时,每天获得的利润最大?最大利润是多少元?(利润=销售收入-成本)
(2012·和平区二模)把一张长为20cm,宽为16cm的矩形硬纸板的四周各剪去一个同样大小的正方形(如图1),再折叠成一个无盖的长方体盒子(纸板的厚度忽
略不计,如图2).设剪去的正方形边长为x(cm),x为正整数.折成的长方体盒子底面积为y(cm
2
).
(1)求y与x之间的函数关系式;
(2)折叠成的长方体盒子底面积是否有最大值?若有,请求出最大值,若没有,说明理由;
(3)你认为折叠成的无盖长方体盒子的侧面积有可能是192cm
2
吗?若能,请求出此时x的值,若不能,请说明理由.
第一页
上一页
107
108
109
110
111
下一页
最后一页
955798
955799
955800
955801
955802
955803
955804
955805
955806
955807