数学
如图,矩形框架两侧有两个长度相等的滑梯(即BC=EF),左边滑梯的高AC与右边滑梯水平方向DF的长相等,∠ABC=26°,那么∠DEF=
26
26
度.
如图,幼儿园的滑梯中有两个长度相等的梯子(BC=EF),左边滑梯的高度AC等于右边滑梯水平方向的长度DF,则∠ABC+∠DFE=
90
90
°.
如图所示,要测量河两岸相对的两点A、B的距离,在AB的垂线BF上取两点C、D,使BC=CD,过D作BF的垂线DE,与AC的延长线交于点E,则∠ABC=∠CDE=90°,BC=DC,∠1=
∠2
∠2
,△ABC≌
△EDC
△EDC
,若测得DE的长为25米,则河宽AB长为
25米
25米
.
如图所示,A、B在一水池的两侧,若BE=DE,∠B=∠D=90°,CD=8m,则水池宽AB=
8
8
m.
如图,有两个长度相同的滑梯,左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,若∠CBA=32°,则∠FED=
32
32
度,∠EFD=
58
58
度.
如图,有一池塘,要测池塘两端A、B两点的距离,可先在平地上取一个可以直接到达A和B的点C,连接AC并延长到D,使CD=CA,连接BC并延长到E,使CE=CB,连接DE,那么量出DE的长就等于AB的长,可根据
SAS
SAS
方法判定△ABC≌△DEC.
如图,要测量池塘两岸相对的两点A、B的距离,可以在AB的垂线BF上取两点C、D,使BC=CD,再作出BF的垂线DE,使A、C、E三点在一条直线上,这时测得
DE
DE
的长就等于AB的长.
如图,有两个长度相等的滑梯靠在一面墙上.已知左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,则这两个滑梯与地面的夹角∠ABC与∠DFE的度数和是
90
90
度.
(2009·阳泉二模)如图是标准跷跷板的示意图.横板AB的中点过支撑点O,且绕点O只能上下转动.如果∠OCA=90°,∠CAO=25°,则小孩玩耍时,跷跷板可以转动的最大角度为
50°
50°
.
如图所示,有两个长度相同的滑梯(即BC=EF),左边滑梯的高度AC与右边滑梯水平方向的长度DF相等,则下列结论:(1)AB=DE;(2)∠ABC+∠DFE=90°;(3)∠ABC=∠DEF中正确的有( )
第一页
上一页
4
5
6
7
8
下一页
最后一页
946854
946855
946856
946857
946858
946859
946860
946861
946862
946863