数学
如图,Rt△ACB和Rt△BAD中,∠ACB=∠BDA=90°,∠ABC=∠BAD,边AD与BC相交于点E.
(1)在图1中,求证:AC=BD;
(2)当Rt△ACB沿BC方向平移到图2所示位置时,边A
1
C
1
与AB边交于点F.过点F作FG⊥AD于点G.此时请你通过观察、测量和猜想.写出FG+FC
1
与BD之间满足的数量关系,然后证明你的猜想;
(3)当Rt△ACB沿BC方向平移到图3所示的位置(点C
1
在线段BE上,且点C
1
与点B不重合)时,(2)中的猜想是否仍然成立?(不用说明理由)
(1)计算:
3
-(4-π
)
0
-6cos30°+|-2|
;
(2)画出函数y=2x+1的图象;
(3)如图,已知点B、E、C、F在同一直线上,AB=DE,∠A=∠D,AC∥DF.求证:BE=CF.
如图,给出四个等式:①AE=AD;②AB=AC;③OB=OC;④∠B=∠C. 现选取其中的三个,以两个作
为已知条件,另一个作为结论组成命题.
(1)请你写出两个真命题(用序号填空).
真命题1:已知
①②
①②
求证:
④
④
.
真命题2:已知
②④
②④
求证:
①
①
.
(2)请你选择其中的一个真命题加以证明;
我选择真命题
1或2
1或2
.
证明:
(1)如图,AB=AC,AE⊥BC于点D,求证:BE=CE.
(2)某蔬菜公司收购到某种蔬菜104吨,准备加工后上市销售.该公司加工该种蔬菜的能力是:每天可以精加工4吨或粗加工8吨.现计划用16天正好完成加工任务,则该公司应安排几天精加工,几天粗加工?
如图,矩形ABCD中,点P是线段AD上一动点,O为BD的中点,PO的延长线交BC于Q.
求证:OP=OQ.
如图所示,矩形ABCD中,点E在CB的延长线上,使CE=AC,连接AE,点F是AE的中点,连接BF、DF,求证:BF⊥DF.
已知:如图所示,在矩形ABCD中,EF⊥AC分别交DC、AB于点E、F,CF∥AE,CF平分∠ACB.
(1)求证:△AOE≌△CBF;
(2)试说明:如何把△AOE进行合适的变换得到△CBF?
小明数学成绩优秀,他平时善于总结,并把总结出的结果灵活运用到做题中是他成功的经验之一,例如,总结出“依次连接任意一个四边形各边中点所得四边形(即原四边形的中点四边形)一定是平行四边形”后,他想到曾经做过的这样一道题:如图1,点P是线段AB的中点,分别以AP和BP为边在线段AB的同侧作等边三角形APC和等边三角形BPD,连接AD和BC,他想到了四边形ABDC的中点四边形一定是菱形.于是,他又进一步探究:
如图2,若P是线段AB上任一点,在AB的同侧作△APC和△BPD,使PC=PA,PD=PB,∠APC=∠BPD,连接CD,设点E,F,G,H分别是AC,AB,BD,CD的中点,顺次连接E,F,G,H.请你接着往下解决三个问题:
(1)猜想四边形ABCD的中点四边形EFGH的形状,直接回答
菱形
菱形
,不必说明理由;
(2)当点P在线段AB的上方时,如图3,在△APB的外部作△APC和△BPD,其它条件不变,(1)中结论还成立吗?说明理由;
(3)如果(2)中,∠APC=∠BPD=90°,其它条件不变,先补全图4,再判断四边形EFGH的形状,并说明理由.
(1)如图,已知D是△ABC的边AB上一点,FC∥AB,DF交AC于点E,DE=EF.求证:E是AC的中点.
(2)如图,已知AD是△ABC的角平分线,DE∥AC交AB于点E,DF∥AB交AC于点F.求证:四边形AEDF是菱形.
问题:如图(1)在菱形ABCD和菱形BEFG中,点A,B,E在同一直线上,P是线段DF的中点,连接PG,PC,若∠ABC=∠BEF=60°,探究PG与PC的位置关系及
PG
PC
的值,小聪同学的思路是延长GP交DC于点H,构造全等三角形,经过推理使问题得到解决.请你参考小聪同学的思路,探究并解决下列问题:
(1)写出上面问题中线段PG与PC的位置关系及
PG
PC
的值.
(2)将图(1)中的菱形BEFG恰好与菱形ABCD的边AB在同一直线上,原问题中的其它条件不变(如图(2))你在(1)中得到的两个结论是否发生变化?写出你的猜想,并加以证明.
第一页
上一页
19
20
21
22
23
下一页
最后一页
968619
968620
968621
968622
968623
968624
968625
968626
968627
968628