试题
题目:
已知:如图所示,在矩形ABCD中,EF⊥AC分别交DC、AB于点E、F,CF∥AE,CF平分∠ACB.
(1)求证:△AOE≌△CBF;
(2)试说明:如何把△AOE进行合适的变换得到△CBF?
答案
(1)证明:∵CF∥AE,
∴∠EAC=∠ACF,
∵CF平分∠ACB,
∴∠BCF=∠ACF,
∴∠EAC=∠BCF,
∵矩形ABCD,
∴CD∥AB,∠B=90°,
∵AE∥CF,
∴四边形AECF是平行四边形,
∴AE=CF,
∵EF⊥AC,
∴∠EOA=90°=∠B,
在△AOE和△CBF中
∠EAC=∠BCF
∠EOA=∠B
AE=CF
,
∴△AOE≌△CBF.
(2)先把△AOE绕着点O旋转180°后得到△COF,再把△COF沿直线CF翻折,即可得到△CBF.
(1)证明:∵CF∥AE,
∴∠EAC=∠ACF,
∵CF平分∠ACB,
∴∠BCF=∠ACF,
∴∠EAC=∠BCF,
∵矩形ABCD,
∴CD∥AB,∠B=90°,
∵AE∥CF,
∴四边形AECF是平行四边形,
∴AE=CF,
∵EF⊥AC,
∴∠EOA=90°=∠B,
在△AOE和△CBF中
∠EAC=∠BCF
∠EOA=∠B
AE=CF
,
∴△AOE≌△CBF.
(2)先把△AOE绕着点O旋转180°后得到△COF,再把△COF沿直线CF翻折,即可得到△CBF.
考点梳理
考点
分析
点评
专题
矩形的性质;全等三角形的判定与性质;平行四边形的判定与性质;翻折变换(折叠问题);旋转的性质.
(1)根据已知求出∠EAC=∠BCF,根据矩形的性质推出AE=CF,根据AAS即可推出答案;
(2)根据中心对称的性质作△AOE关于O的对称图形,再延CF翻折即可.
本题主要考查对矩形的性质,平行四边形的性质和判定,全等三角形的判定,翻折变换,旋转性质等知识点的理解和掌握,能综合运用这些性质进行推理是解此题的关键.
证明题.
找相似题
(2013·雅安)如图,DE是△ABC的中位线,延长DE至F使EF=DE,连接CF,则S
△CEF
:S
四边形BCED
的值为( )
如图,已知·ABCD中,点E为BC边的中点,连结DE并延长DE交AB的延长线于F.求证:
(1)△CDE≌△BFE;
(2)DB∥CF.
已知:平行四边形ABCD中,E、F分别是BA、DC延长线上的点,且AE∥CF,交BC、AD于点G、H、试说明:EG=FH.
如图1,P为Rt△ABC所在平面内任意一点(不在直线AC上),∠ACB=90°,M为AB边中点.
操作:以PA、PC为邻边作平行四边形PADC,连接PM并延长到点E,使ME=PM,连接DE.
(1)请你利用图2,选择Rt△ABC内的任意一点P按上述方法操作;
(2)经历(1)之后,观察两图形,猜想线段DE和线段AC之间有怎样的位置关系?请选择其中的一个图形证明你的猜想;
(3)观察两图,你还可得出和DE相关的什么结论?请直接写出.
如图,已知AB=AE,∠B=∠E,BC=ED,点F是CD的中点,你知道AF与CD之间具有怎样的位置关系吗?你能说明其中的道理吗?